
Artur Zacniewski

Web-Based API as a Tool in Teaching
Computer Vision Concepts
Edukacja - Technika - Informatyka nr 1(19), 297-304

2017

297

©Wydawnictwo UR 2017

ISSN 2080-9069

ISSN 2450-9221 online

„Edukacja – Technika – Informatyka” nr 1/19/2017

www.eti.rzeszow.pl

DOI: 10.15584/eti.2017.1.41

ARTUR ZACNIEWSKI

Web-Based API as a Tool in Teaching Computer

Vision Concepts

Doktor inżynier, Akademia Marynarki Wojennej w Gdyni, Wydział Nawigacji i Uzbrojenia Okrę-

towego, Zakład Informatyki, Polska

Abstract

The article presents the stages of building Web-based API as a tool for teaching selected

concepts of image processing server and shows a structure allowing for its implementation. During

the implementation open source tools were used – graphical library OpenCV and Python

programming language, which allows the implementation of both web part (by Django

framework), as well as the cooperation with the above library.

Idea of the creation of new Web-based API endpoints and the ability to change the parameters

library OpenCV algorithms by modifying the URL in your browser were shown. Stages of creating

each endpoint has been depicted with practical example on the image processing. Advantages and

limitations of the proposed solution were presented.

Keywords: Web-based API, Computer Vision, image processing

Introduction

An Application Programming Interface (API) is a set of specifications and

rules that software programs can follow to communicate with each other. An

API expresses a software component in terms of its operations, inputs, outputs,

and underlying types. It also defines functionalities that are independent of their

respective implementations, which allows definitions and implementations to

vary without compromising the interface. A good API makes it easier to develop

a program by providing all the building blocks. A programmer then puts the

blocks together (Cataldo, Mockus, Roberts, Herbsleb, 2009).

A Web-API is just an API for either a web server or web browser. In this

article server-side API is discussed. This kind of API is a programmatic interface

to defined request-response message system. Most popular standard for

representing data structures in such systems is JSON (Java Script Object

Notation) and formats based on JSON. Nowadays APIs for web applications are

moved towards collection of RESTful web resources. REST (Representational

State Transfer) is a software architecture style consisting of guidelines and best

practices for creating scalable web services. These RESTful Web APIs are

http://dx.doi.org/10.15584/eti.2017.1.41

298

accessible via standard HTTP methods (like GET, POST, PUT, DELETE etc.)

by a variety of HTTP clients including browsers and mobile devices

(Benslimane, Dustdar, S., Sheth, 2008; Cataldo i in., 2009). Designing of

RESTful Web APIs is covered in details in (Richardson, Amundsen, 2013).

Creators of Computer Vision applications and libraries can face a problem

with showing their software to the wider audience, i.a. as a tool in teaching

chosen concepts. Is there a way to overcome this obstacle with a help of Web

technologies? One of the most useful feature of Web-API is ability to share

programming interface and resources of particular Web system to the client

without necessity of installing anything. User doesn’t need to have particular

software installed on his machine, but thanks to Web-API he can check

possibilities of interesting system using only his browser. Of course this API

must be created before. In the article project with Web-API aimed at teaching

concepts of Computer Vision with OpenCV is presented.

The idea of using Web-based API to interact with Computer Vision libraries

isn’t quite new. There are few promising portals like CloudCV.org,

BetaFaceApi.com or PyImageSearch.com, but no relevant literature about this

topic was submitted.

Materials and methods

OpenCV (Open Source Computer Vision Library) is an open source com-

puter vision and machine learning software library. The library has more than

2500 optimized algorithms, which can be used to detect and recognize faces,

identify objects, classify human actions in videos, track camera movements,

track moving objects, extract 3D models of objects, produce 3D point clouds

from stereo cameras, stitch images together to produce a high resolution image

of an entire scene, find similar images from an image database, remove red eyes

from images taken using flash, follow eye movements, recognize scenery and

establish markers to overlay it with augmented reality, etc. OpenCV has C++, C,

Python, Java and MATLAB interfaces and supports Windows, Linux, Android

and Mac OS (OpenCV, 2017). It’s perfect tool to teach and learn concepts of

Computer Vision.

Python is one of the aforementioned languages, which works with OpenCV.

It also has expansive library of web frameworks and could be proper tool to

build Web-based API. Figure 1 shows configuration of the server working with

Python. It’s a typical configuration for most server providers. The only recom-

mended operating system for production Python web stack deployments is

Linux.

A Web Server Gateway Interface (WSGI) server implements the web server

side of the WSGI interface for running Python web applications (Makai, 2015).

299

Fig. 1. Configuration of server working with Python (Makai, 2015)

Application dependencies are the libraries other than project code that are

required to create and run your application. Dependencies are installed separate-

ly from system-level packages to prevent library version conflicts. The most

common isolation method is using virtual environments. Each ‘virtualenv’ is its

own copy of the Python interpreter and dependencies in the ’site-packages’ di-

rectory. To use a ‘virtualenv’ it must first be created with the virtualenv com-

mand and then activated. The virtual environment stores dependencies in an

isolated environment. The web application then relies only on that ‘virtualenv’

instance (Makai, 2015). In this particular case uWSGI, Django, Requests and

NumPy were used.

Django is one of the most popular frameworks for Python (Django, 2017)

and it allows for building Model-View-Controller (MVC) applications.

Requests is „an elegant and simple HTTP library for Python, built for human

beings” (Requests). And finally NumPy is the fundamental package for scientific

computing with Python (NumPy, 2017). NumPy is necessary, because OpenCV

represents images as multi-dimensional NumPy’s arrays.

Experiments

Many popular areas of Computer Vision can be observed and learnt using

Web-based API, for example face detection or simple thresholding. This article

shows implementation of few possible algorithms that can be used, but the list of

acceptable options is much longer.

300

Face detection

Haar feature-based cascade classifier for object detection has been initially

proposed by Viola (Viola, Jones, 2001) and improved by Lienhart (Lienhart,

Maydt, 2002). In OpenCV basic cascade classifier class for object detection is

CascadeClassifier class. The load method of this class loads classifier from the

XML file and the detectMultiScale method allows detecting objects of different

sizes in the input image. The detected objects are returned as a list of rectangles

(OpenCV, 2017). This class and its methods can be used in a Django’s view to

build given feature in Web-based API. View is a part of application that reacts

on input and gives results dependent on used algorithm.

In this particular case ‘haarcascade_frontalface_default.xml’ file with

trained Haar classifier was chosen, but there are few other different classifiers

available in OpenCV. Using command line library like cURL allows to get in-

formation in JSON format. Figure 2 shows example of interacting with Web-

-based API. Response in JSON format consists of information about number of

detected faces and their coordinates.

Fig. 2. JSON response after detecting multiple faces

Due to some disadvantages of Viola-Jones algorithm only chosen images

(frontal face, no face rotation, proper lightning conditions) were analysed. De-

tailed analysis and proposition of improvement for this algorithm is presented in

(Yi-Qing Wang, 2014).

Additional parameters in the URL

Generally, passing an argument via URL could be performed in the follow-

ing way:

 address-of-the-server/view-name/parameters/

For the purposes of this article simple Web-based API was created on au-

thor’s page (http://www.zacniewski.pl/vision/). User interacts with basic Com-

puter Vision algorithms by submitting images from the Internet and watching

results. Parameters can be changed directly in the browser and no additional

software is needed. OpenCV (version 3.2.0) installed on VPS (Virtual Private

Server) allows for active learning in the area of Computer Vision.

In the case of face detection the only argument that could be passed to the

server is a path to the image (in this case URL of the image). But many algo-

rithms require additional parameters, for example value of threshold in thresh-

olding methods. Django allows for passing additional parameters in the URL.

Values of these parameters can be used in particular views.

301

In OpenCV method dedicated to simple thresholding is called threshold and

it requires fixed-value threshold value that is applied to the single-channel array.

In the definition of function responsible for handling view in Django, addi-

tional parameters should be declared. Results of applying different values of

threshold for binary type (THRESH_BINARY) of thresholding are presented on

figure 3. In this example additional parameter is just a fixed-value of threshold

(OpenCV, 2017).

a) b) c)

Fig. 3. Simple thresholding with THRESH_BINARY:

a) threshold = 50, b) threshold = 127, c) threshold = 170

Global value set for the threshold is not always right solution. It may be not

good in all situations where image has different lightning conditions in different

areas. Using adaptive thresholding allows to overcome this problem by getting

different thresholds for different regions of the image. Function adaptiveThresh

-old from OpenCV can be used in the Django’s view. Changing one of the pa-

rameters of this function can be done via Web-based API. ADAP-

TIVE_THRESH_GAUSSIAN_C option was used – threshold value is the

weighted sum of neighbourhood values where weights are a Gaussian window

(OpenCV, 2017).

a) b) c)

Fig. 4. Adaptive thresholding with ADAPTIVE_THRESH_GAUSSIAN_C:

a) threshold = 50, b) threshold = 127, c) threshold = 170

302

Results of applying adaptive thresholding are presented on figure 4. In this

example additional parameter is non-zero value assigned to the pixels for which

the thresholding condition is satisfied (OpenCV, 2017). Passing additional pa-

rameter to the API is identical like in the simple thresholding case, but the view

must be appropriately modified.

Some of Computer Vision algorithms require two or more parameters. The

problem with passing them in the URL may arise. Using named groups in Djan-

go’s URL dispatcher solves easily this issue. The main rule is that names of the

parameters in URL dispatcher should be the same as these in corresponding

views. Part of URL dispatcher and part of the corresponding view are presented

on figure 5. Expression starting with ‘?P’ is named group and the name in angle

bracket is a parameter that is used in the canny view. In this particular example

thr1 and thr2 names are used both in the dispatcher and in the view.

a) url(r'^vision/canny-detector/(?P<thr1>[0-9]+)/(?P<thr2>[0-9]+)/$',

'face_detector.views.canny'),

b) def canny(request, thr1="100", thr2="200"):

edges = cv2.Canny(image, float(thr1), float(thr2))

Fig. 5. Using named groups in Django: a) part of the URL dispatcher, b) part of the view

a) b) c)

Fig. 6. Canny’s edge detection with different values of thresholds: a) lower = 50, upper = 100;

b) lower = 50, upper = 150; c) lower = 50, upper = 250

In OpenCV one of the algorithms that requires two parameters is Canny’s

edge detection algorithm. Aforementioned parameters are upper and lower

threshold for the hysteresis procedure (Canny, 1986; OpenCV, 2017). Results of

applying Canny’s algorithm through Web-based API are presented on figure 6.

It is worth mentioning that Canny recommended anupper/lower ratio between

2:1 and 3:1 (Canny, 1986).

Table 1 presents endpoints of Web-based API presented in the article. There is

no limitation in the number of arguments passed to the server in the URL, so theo-

retically many more algorithms can be observed and analysed using Web browser,

303

without necessity of installing any Computer Vision library. Student can check

and try given algorithm by typing URL in the browser and watch the results.

Table 1. Endpoints of Web-based API

Algorithm Example of URL usage Explanation

Face detection

with Haar

classifier

zacniewski.pl/vision

/detect-faces/

No parameters needed

Thresholding zacniewski.pl/vision

/thresholding/127/
127 is a value of threshold

(binary thresholding and

adaptive thresholding)

Canny's edge

detection

zacniewski.pl/vision

/canny-detector/100/200/

100 is a value for lower and

200 for upper threshold in

hysteresis procedure of

Canny’s algorithm

One can also pass parameters of chosen methods, change them to spot the

differences. All without installing Computer Vision library.

Discussion

Web-based API may serve as practical tool in learning Computer Vision

concepts, but some requirements to the server must be met. Level of privileges

and possibility of installing packages and libraries (both system-wide and in

virtual environments) plays key role. For example cheaper servers don’t have

GUI (Graphical User Interface) libraries, data is transferred using JSON, which

is not always sufficient. Better option is VPS, where one can install and modify

software (also GUI libraries) for teaching purposes.

The process of creating Web-based API consists of creating proper URL in

URL dispatcher and implementing view for this URL. Parameters passed from

the URL are being used in the view function or class. Modern frameworks

facilitate this process in significant way.

Presented approach allows expanding created API in easy way. Gaining

from using this kind of learning are obvious. ‘Learning-by-doing’ concept is

achieved by experimenting with different algorithms, modifying them and

watching the results, without necessity of buying or installing software. One can

try to learn new things using only his browser, it can be done with PC or

smartphone, what makes this method very versatile.

Disclaimer

All pictures used in this article were labelled in Google for reuse in non-

-commercial purposes.

304

Literature
Benslimane, D., Dustdar, S., Sheth, A. (2008). Services Mashups: The New Generation of Web

Applications. IEEE Internet Computing, 12, 13–15.

Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 8 (6), 679–698.
Cataldo, M., Mockus, A., Roberts, J., Herbsleb, J. (2009). Software Dependencies, Work

Dependencies, and Their Impact on Failures. IEEE Transactions on Software Engineering,

35, 864–878.

Django (2017). Retrieved from: https://www.djangoproject.com/ (1.2017).

Lienhart, R., Maydt, J. (2002). An Extended Set of Haar-like Features for Rapid Object Detection.

IEEE ICIP, 1, 900–903.

Makai, M. (2015). The Full Stack Python Guide to Deployments. San Francisco: Gumroad.

NumPy (2017). Retrieved from: http://www.numpy.org/ (1.2017).

OpenCV (2017). Retrieved from: http://docs.opencv.org/ (1.2017).

Requests, Retrieved from: http://docs.python-requests.org/en/latest/index.html (8.2015).

Richardson, L., Amundsen, M. (2013). RESTful Web APIs. Sebastopol: O’Reilly.

Viola, P., Jones, M. (2001). Rapid Object Detection using a Boosted Cascade of Simple Features.

IEEE CVPR.

Wikipedia about Mikhail Botvinnik. Retrieved from: https://en.wikipedia.org/wiki/Mikhail_

Botvinnik (8.2015).

Yi-Qing Wang (2014). An Analysis of the Viola-Jones Face Detection Algorithm. Image

Processing On Line, 4, 128–148.

http://docs.opencv.org/
http://docs.opencv.org/
http://dx.doi.org/10.5201/ipol.2014

