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Introduction

The availability of smart homes will have a huge impact on our future lifestyle 
because they will be able to act “intelligently” and provide services according to our 
personal preferences. So, smart homes may take care of and communicate about 
a lot of tasks, for example regulating power consumption as a function of time and 
controlling light, ventilation and heating systems to fulfil the user’s needs1.

Many home automation systems often used the strategy of centralizing the 
smart object event and action processing2. This approach has some disadvantages, 
such as severe security flaws, single point of failure sensitivity and the requirement 
for a large amount of network bandwidth and processing power3. Another design 
strategy is distributing the smart home event and action processing between differ­
ent smart home systems running in parallel. This strategy reduces the impact of the 
security flaws and single points of failure. It also offers the possibility of pre­
processing the smart object events and actions before transmitting them to the next 
part of the distributed processing chain. This is an enabler for a variety of different

1 K. Balasubramanian, A. Cellatoglu: Improvements in home automation strategies for de­
signing apparatus for efficient smart home, Consumer Electronics, IEEE Transactions on, Vol. 
54, No. 4, 2008, pp. 1681-1687.

2 Thinagaran Perumal, A R Rmali, Chui Yew Leong: Interoperability Framework for 
Smart Home Systems, IEEE Transactions on Consumer Electronics, Vol. 57, No. 4, 2011, pp. 
1607-1611.

3 M Starsinic: System Architecture Challenges in the Home M2M Networks, in 
Applications and Technology Conference (LISAT), Long Island Systems, 2010, pp. 1-7.
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smart object types that offer different processing power and network resources4. 
Some of these could e.g. be combined into a distributed smart home system swarm 
using the concept of embedded cloud computing5.

This paper presents a distributed smart home system that is divided into two 
blocks named: Smart Home System part I (SHS-I) and Smart Home System part II 
(SHS-II). SHS-I is a distributed artificial intelligence system that are embedded into 
the smart home devices. It offers a simple system that are able to learn and predict 
stateless user actions as e.g. making breakfast, taking a shower, etc. The SHS-II is 
basically a system that is able to learn an activity from a sequence of user initiated 
actions and based on this, proposes a correlated smart home activity to the user.

This work is organized as a presentation of the smart home model followed by 
a discussion of the involved blocks and components. The SHS-II component is 
investigated and discussed at a very detailed level. First, the theoretical framework 
is presented. Second, its performance is validated by implementing a Java based 
simulation model that is able to learn from a sequence of activities and predefined 
user-annotated activities.

1. Related work

Many related papers have been issued about artificial intelligence in smart 
homes, some of these use probabilistic models as the basis for detection. Especially, 
the work done by Kasteren et al.6 is relevant. They worked with a simple sensor 
network approach in combination with both an HMM and a conditional random 
fields (CRF) model for classification. Their work has achieved good accuracy for 
activity prediction, that is, training and prediction on the fly, but it suffers from 
a high degree of complexity, that is, high performance loss in running the full algo­
rithms, and it does not provide the flexibility and advantages a distributed smart 
home system offers. Fang et al.7 have tested the Naive Bayes, HMM and Viterbi 
algorithms with respect to detecting human activities from observed sensor events. 
They have used the huge CASAS data set and looked into the effect of different 
time window lengths. Their findings are that a quantized time window, quite similar

4 S. Bhardwaj, T. Ozcelebi, J. Lukkien, and C. Uysal: Resource and Service Management 
Architecture of a Low Capacity Network for Smart Spaces, IEEE Transactions on Consumer 
Electronics, Vol. 58, No. 2, 2012, pp. 389-396.

5 X Ye and J Huang: A Framework for Cloud-based Smart Home, International 
Conference on Computer Science and Network Technology, 2011.

6 T.V. Kasteren, A. Noulas, G. Englebienne, and B. Krose: Accurate Activity Recognition 
in a Home Setting, UbiComp ’08, September 21-24, Seoul, Korea, 2008.

7 H. Fang, R. Srinivasan, and D.J. Cook: Feature Selections for Human Activity 
Recognition in Smart Home Environments, International Journal of Innovative Computing, 
Information and Control, Vol. 8, No. 5, May 2012.
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to the one used in this work, should have a length of one hour and it should cover 
a time span of either 12 or 24 hours to achieve optimal learning. So, from this re­
sult, the number of quantization steps in this work has been selected as 24, each of 
one hour duration. A paper by Cook8 discusses if it is possible to generalize activity 
learning over different environmental settings and resident types. She concluded 
that this is possible to some extent. So, her work supports the assumption that an 
action sequence contains correlation information, as also assumed in this work. 
Furthermore, this conclusion is also very promising in the light of offering “out of 
a box” smart home technologies.

2. Model and system architecture

A model that covers the presented smart home system at a high abstraction 
level is illustrated in Fig.

Fig. 1. A model for the presented smart home system 
Source: own elaboration.

Leftmost in Fig is a smart home user that carries out scenarios in the form of a 
normal living pattern in a smart home. This way the user interacts indirectly with 
the smart home by triggering sensors and receives feedback in form of actions. 
These actions are carried out by the smart home system actuators. In the presented

8 D.J. Cook: Learning Setting-Generalized Activity M odels fo r  Smart Spaces, Intellligent 
Systems IEEE 2012, Vol. 27, No. 1, pp. 32-38.



362 Per Lynggaard

smart home system these sensors and actuators are assigned the conceptual name 
Smart Home System one (SHS-I). Such a system is limited by the low amount of 
processing power available in the small embedded microcontrollers and by the 
available battery power source, etc. To overcome these limitations an advanced and 
extended smart home system is added in form of a more sophisticated artificial 
framework. This framework is named Smart Home System two (SHS-II) to indicate 
that it is an add-on to SHS-I. The SHS-II cannot be used as a standalone system 
because it require the predicted actions from the SHS-I system or from some other 
compliant systems (e.g. Naïve Base based), as input. Thus, is uses the actions from 
SHS-I to make its own prediction.

This SHS-II system is the target for this paper, so the next section will de­
scribe this from a more technical point of view.

3. Activity processing (SHS-II)

The activity processing in the SHS-II system is illustrated in Fig.

Fig. 2. Activity processing in SHS-II 
Source: own elaboration.

Actions arriving from SHS-I are placed in an action buffer in the time order of 
arrival. Old actions in the action buffer that are beyond a predefine time limit are 
simply thrown away in a cyclical manner so the newest actions are always placed 
first in the buffer.

These actions are processed by traversing the action buffer. First, the action 
name is used as a key to enable the respective state using the Enable / Disable flow 
in Fig. When a state is enabled, the action arrival time is used as an index that 
points out one specific weight in a time pool of weights, see Fig. Thus, each state
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contains weights that express an un-scaled probability (the term un-scaled “prob­
ability” means it does not sum to one) for the action to happen at that time. These 
weights quantize time into intervals of one hour. In total this means there are 24 of 
them, because there is no date or year information type provided. So, this system 
offers the preservation of action arrival sequence and arrival time in the states.

Looking at Fig the similarity to the HMM is visible, especially if the action 
buffer is modelled as the observable variable and the states as a hidden variable. 
The fact that the HMM offers a relaxation of the independent and identically dis­
tributed (i.i.d.) assumption often used to simplify classifiers, means that cross­
correlation between the actions can be handled. Often, a huge matrix is required to 
handle this, but using the Markov assumption it can be assumed that future predic­
tions are independent of all but the most recent observations. Based on this assump­
tion, the presented SHS-II agent captures a specific predefined activity, for example 
“set home into sleep mode”, in state SF that is dedicated to look for this action only. 
Then the system uses the time buffer in combination with the previous state candi­
date and the time based weights to look up the most likely last state (i.e. a hidden 
state estimate).

The targets in the following sections are the learning and prediction principles 
that are extracted from the more general HMM and Viterbi theory.

4. Activity learning and prediction

The HMM based learning process used in this work is iteratively based, that 
is, the model learns “on the fly” in the form of online learning. This is achieved by 
updating the estimated joint probability whenever the user supplies a predefined 
activity that matches.

From a statistical point of view it is assumed that the y-vector contains the 
predicted activity and the x-vector contains the input from the actions in the action 
buffers in the time window T. Thus, the joint probability for the suggested system
can be expressed as: p ( x n , y n ) = p ( x \ y n )pCyJyn-1) where n is the discrete
quantized time. Looking into the right hand side, the first factor and using the de­
fined x- and y-vector nomenclature, the conditional probability for x being the vec­
tor that produces activity in time window T can be described by a simplified Ber­
noulli distribution. The parameters for this distribution can be estimated analytically 
using a maximum likelihood parameter estimation method. Regarding the right 
hand side second factor, it expresses the transition probability distribution that 
represents the probability of going from one state to the next. These transition prob­
abilities can be represented by well-defined a multinomial distribution.

Regarding the activity prediction it is performed by using a simplified prob­
abilistic Markov classification approach combined with a simple threshold. As al­
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ready stated, it is assumed that all actions are temporally related. So, regarding the 
inference problem, it deals with finding the best single state sequence that maxi­
mizes the probability p (  x n, y n ). One often used efficient strategy is the Viterbi
algorithm, because it reduces the calculation’s complexity. Combining this with the 
first order Markov assumption reduces the buffer look back. A simplified Viterbi 
optimization process where it is assumed that the initial probability is equal for all 
states and the ending state is the predefined agent state SF is given by 
AM  =  [max p (  x n J y n-1 = i ) a u ] p (  x n|y n = S F ) which states that given yn is the

1<i<M

specific predefined action (i.e. action i) and the vectors xn_i and xn are the given 
observations, the highest probability must be searched by varying the choice of the 
previous state and its transition probability to state i.

From this expression it is observed that the maximal probability is found by 
performing a search through all the previous states multiplied by their transition 
probability to the current predefined state SF. Thus, the prediction phase takes place 
as follows. When a new action arrives in the action buffer, the buffer is traversed by 
processing the actions one at a time. So, based on each action, the related state Sm 
and the time quantized weight are located. This weight is then multiplied with the 
transition weight connecting that state to the specific predefined action SF. At the 
end of the cyclical process, the highest value is found and multiplied with the 
weight.

After using a threshold limit, the value that exceeds this limit is selected as the 
best estimate for the predicted current activity. Note that the threshold process re­
stricts the importance of the selected activity and, thereby, whether it is presented 
for the user.

5. Implementation and performance

The described smart home system is modelled using a Java program running 
on a common PC. All the essential algorithms are implemented on this platform. 
Parameter settings for these algorithms have been chosen by using an experimental 
approach.

To test the SHS-II system, the Aruba 2010-2011 data set from the WSU 
CASAS smart home project9 has been used. This was recorded in a house with 26 
sensors where a woman lived for approximately 7 months. The woman’s children 
and grandchildren visited on a regular basis. This resulted in 6468 sensor events 
that are all annotated by the user. These events are: meal_preparation, relax, eating,

9 D.J. Cook: Learning Setting-Generalized Activity Models for Smart Spaces, IEEE 
Intelligent Systems 2012, Vol. 27, No. 1, pp. 32-38.
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work, sleeping, wash_dish, bed_to_toilet, enter_home, leave_home, housekeeping 
and resparate.

To be able to test the SHS-II system it has been defined that a “leave home” 
and “enter home” difference of more than 1 hour should be detected. This enables 
the SHS-II system to autonomous power down the home when the user has left, etc.

As discussed earlier, it is a requirement that correlation between the users 
activities exists in order to achieve good system performance. Thus an experiment 
is performed to clarify if this is the case in the used data set. By running the CASAS 
data through the learning algorithm triggered by the “leave home” activity and 
mapping the weights, results. It should be noted that these data have been pre­
processed so only those where the user is away for more than 1 hour have been used 
in this figure.

Fig. 3. Weights for the trained SHS-II model. The normalized weight values (y-axis) as 
a function of time quantized into chunks of one hour (x-axis)

Source: own elaboration.

As seen from the SHS-II trained weights, the correlation between the user 
activities can be found and thereby learned by SHS-II. This is also expected be­
cause most people have habits and follow the same system to some extent. Looking 
at the “leave home” curve it has peaks at 8, 11 and 15 hours, meaning that the user 
leaves the home most likely at these times. Focusing on “meal preparation” it can 
be seen that this peaks just before the “leave home” peaks. This means a correlation 
between preparing meals and afterwards leaving home properly exists. This is also 
what most people would be expected to do, for example, eat breakfast and then
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leave home for work. The other activities also seem to have the same kind of cross­
correlation.

The question is then, whether the cases where the user leaves for more than 
one hour can be differentiated from the cases where the user will be back in one 
hour, based only on the activity weights. The performed research reveals that the 
above discussed correlation provides the necessary information. I.e. it is possible to 
detect the leave home situation with a good statistical probability.

The blue curve is the situations where the user leaves the home for more than 
one hour, whereas the red curve covers the situations where the user is away less 
than one hour. Comparing these curves it is obvious that some correlation exists 
between relaxing and leaving the home for more than one hour.

Thus, it can be observed that correlation is present, properly provided by the 
user habits, and that SHS-II is able to capture this correlation in its weights, that is, 
it learns.

Fig. 4. The difference in activity relax begins when the user leaves the home for more than 
one hour (blue curve) and less than one hour (red curve)

Source: own elaboration.

As discussed, the SHS-II algorithm has been evaluated by using the leaving 
home scenario where the “leave home” activity is the predefined activity trigger 
type and the time differences between leaving home and entering home is more than 
one hour. Looking into the numbers the algorithm estimates the leaving home activ­
ity correctly approximately 75% of the time after learning from 295 user-annotated 
activity events. Thus, the estimation failure rate is 25% of the time. This is not 
a serious problem because from the user point of view, it means that an activity is 
not suggested to which the user response will probably be that the user performs 
this activity manually. However, this user interruption produces an annotated ac­
tion-event from which the system learns and thereby improves, that is, it “boot­
straps”. More serious is the false positive (FP) outcome of 36%, because this means 
that the algorithm suggests an action that is not requested by the user’s behaviour
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and which would probably be annoying for the user over time. This FP rate can be 
reduced by either adjusting the classifier parameters or by using more sensors to 
provide finer granularity of the information produced by the user’s actions10 11.

A direct comparison with other work is not simple, because, to the author’s 
knowledge, the presented distributed smart home system has not been seen in this 
form before, that is, a combination of an action predictor using the Naive Bayes 
classifier that feeds an activity recognition system based on HMM has not been 
seen. However, it seems reasonable to compare SHS-II with other systems that 
predict user activity using a sequence of actions. One example is given in the work 
of Cheng-Tzong et a ln They designed a scenario based on a user activity predic­
tion system named Adaptive Scenario Based Reasoning (ASBR) with a score of 
80%. They also compared the performance of their system with a Case Based Rea­
soning (CBR) approach with a score of 75%. So, the results of the performance 
comparison is that they this presented system perform almost equally with other 
systems. However, it should be noted that these systems are quite different in their 
approaches and design even though the results are comparable.

Conclusions

A distributed smart home system has been presented. It offers a concept that 
combines a simple low level activity classifier named SHS-I with a high level one 
named SHS-II that is the target for this paper.

By using the public available CASAS data set it was found that the presented 
system behaves well compared to the CBR and ASBR systems. It achieves a true 
positive rate of 75% in the “leave home” scenario.

However, it should be noted that the threshold limit values are set manually, 
so further investigation is needed to clarify whether these limits are useable beyond 
the leave home scenario.

The future perspective of this work is to investigate the possibility of imple­
menting SHS-II on different hardware platforms. Furthermore, an investigation of 
the look back depth in the SHS-II action buffer also needs investigation.

10 Hongqing Fang, Raghavendiran Srinivasan, and Diane J Cook: Feature Selections for 
Human Activity Recegnition, International Journal of Innovative Computing, Information and 
Control, vol. 8, no. 5, 2012, pp. 3525-3535.

11 Sheng Cheng-Tzong, Chi-Hsuan Wang, and Ching-Chung Chen: An Adaptive Scenario 
Based Reasoning System cross smart houses, Communications and Information Technologies, pp. 
549-554, 2009.



368 Per Lynggaard

Literature

1. Balasubramanian K. and Cellatoglu A.: Im p ro vem en ts  in hom e au tom ation  s tra te ­
g ie s  fo r  design ing  appara tu s fo r  e ffic ien t sm a r t ho m e , Consumer Electronics, IEEE 
Transactions on, Vol. 54, No. 4, 2008.

2. Perumal T., Rmali A.R., and Chui Y.L.: In te ro p era b ility  F ra m ew o rk  fo r  S m a rt 
H o m e System s, IEEE Transactions on Consumer Electronics, Vol. 57, No. 4, 2011.

3. Starsinic M.: System  A rch itec tu re  C ha llenges in  the H om e M 2 M  N etw orks, in 
Applications and Technology Conference (LISAT), Long Island Systems, 2010.

4. Bhardwaj S., Ozcelebi T., Lukkien J., and Uysal C.: R eso u rce  a n d  Service  
M a n a g em en t A rch itec tu re  o f  a  L ow  C apacity  N e tw o rk  f o r  S m a r t S p a ces, IEEE 
Transactions on Consumer Electronics, Vol. 58, No. 2, 2012.

5. Ye X., and Huang J.: A  F ra m ew o rk  fo r  C lo u d -b a sed  S m a rt H om e, International 
Conference on Computer Science and Network Technology, 2011.

6 . Kasteren T.V., Noulas A., Englebienne G., and Krose B.: A ccu ra te  A c tiv ity  
R eco g n itio n  in a  H om e Setting , UbiComp ’08, September 21-24, Seoul, Korea., 
2008.

7. Fang H., Srinivasan R., and Cook D.J.: F ea ture  S e lec tio n s f o r  H um an  A c tiv ity  
R eco g n itio n  in S m a r t H om e E n v iro n m en ts , International Journal of Innovative 
Computing, Information and Control, Vol. 8 , No. 5, May 2012.

8 . Cook D.J.: L ea rn in g  Se ttin g -G en era lized  A c tiv ity  M o d e ls  f o r  S m a rt Spaces, 
Intellligent Systems IEEE, Vol. 27, No. 1, 2012.

9. Cook D.J.: L ea rn in g  Se ttin g -G en era lized  A c tiv ity  M o d e ls  f o r  S m a r t Spaces, IEEE 
Intelligent Systems, Vol. 27, No. 1, 2012.

10. Fang H., Srinivasan R., and Cook D.J.: F ea ture  S e lec tio n s f o r  H um an  A c tiv ity  
R eceg n itio n , International Journal of Innovative Computing, Information and 
Control, Vol. 8 , No. 5, 2012.

11. Sheng Ch.-T., Wang Ch.H., and Chen Ch.-Ch.: A n  A d a p tiv e  Scenario  B a se d  
R ea so n in g  System  cross sm a rt h o u ses , Communications and Information 
Technologies, 2009.



Distributed smart home activity recommender system... 369

DISTRIBUTED SMART HOME ACTIVITY RECOMMENDER SYSTEM 
USING HIDDEN MARKOV MODEL PRINCIPLES

Summary

A smart home is able to propose learned activities to its user and learn new activi­
ties by observing the user’s behavioral patterns, that is, the user’s actions. Most of to­
day’s discussed systems use some more or less complex classifier algorithms to predict 
user activities from contextual information provided by sensors. However, an alterna­
tive concept using a distributed framework is presented in this paper. It offers the possi­
bility of combining simple low level activity classifiers with a more sophisticated one.

The high level classifier has been modeled in Java and tested on a publicly avail­
able data set that offers approximately seven months of annotated activity including 
6468 sensor events produced by a women living in the test home. Using this data set, it 
has been shown that this system can achieve good performance with a recognition prob­
ability of 75%.

T ransla ted  b y  P e r  L yn g g a a rd


