Ingo Klein, Christian Kock, Fabian
Tinkl

Spatial-serial dependency in
multivariate GARCH models and
dynamic copulas: a simulation study

Managerial Economics 7, 43-62

2010

Artykut zostat opracowany do udostepnienia w internecie przez
Muzeum Historii Polski w ramach prac podejmowanych na rzecz
zapewnienia otwartego, powszechnego i trwatego dostepu do
polskiego dorobku naukowego i kulturalnego. Artykut jest umieszczony
w kolekcji cyfrowej bazhum.muzhp.pl, gromadzacej zawartos¢ polskich
czasopism humanistycznych i spotecznych.

Tekst jest udostepniony do wykorzystania w ramach
dozwolonego uzytku.

3 ¢
<
b B

MUZEUM HISTORII POLSKI



Ekonomia Menedzerska
2010, nr 7, s. 43-62

Ingo Klein*, Christian Kock**, Fabian Tinkl*#*%*

Spatial-serial dependency
in multivariate GARCH models
and dynamic copulas: a simulation study

1. Introduction

Since the pioneering work of Embrechts et al. (1999), copula models have
enjoyed steadily increasing popularity in finance. But there is also a lot of criti-
cism concerning the use of copulas for modelling stochastic dependence. Mikosch
(20006, p. 12) states in his famous paper with the title “Copulas: Tales and Facts”
as point nine:

Copulas completely fail in describing complex space-time dependence structures.

Their focus is on spatial dependence and the related statistics (...) are aimed at iid

data. It is contradictory that in risk management, where one observes a lot of depen-
dence through time, copulas are applied most frequently.

With some exceptions (see f.e. Patton (20006)) copulas are applied to finan-
cial data after the serial dependency of this data has been filtered by adapting
univariate GARCH-processes to each series (see f.e. Poon et al. (2004), Klein &
Fischer (2004), Kock (2008)). Copulas will be fitted to the set of univariate filtered
time series. Aside the fact that the model used for filtering could be misspeci-
fied there must still be serial dependency in the cross-relationship of the filtered
time series. Otherwise, multivariate GARCH models could not be so successful
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for fitting financial data. On the other side, filtering the serial dependency by
multivariate GARCH models and using a copula model for the remaining con-
temporaneous dependency of the filtered series is not useful. If the multivariate
GARCH model is not misspecified the standardized residuals necessarily show
independence. This means that the only useful copula for the filtered vector is
the independence copula.

In the following we would like to investigate how these filtering strategies
work. What we can see from a multivariate GARCH model is the conditional
spatial dependency in the sense of Mikosch. Up to now, there is no method to
identify the copula of the conditional multivariate distribution that is implicitly
part of a multivariate GARCH model. In this article we show, that as long as the
innovation process is a spherical one, an elliptic conditional copula like the
Gaussian will be appropriate to recapture the dependence of a MGARCH model.
Therefore, we use a simulation design to get an impression of the interplay
between the serial dependency of multivariate GARCH models and the spatial
dependency of copulas.

Within the framework of the first study we draw two series of random ob-
servations from a bivariate copula model with fixed cross dependence. We make
both series serial dependent by transforming each series using two separate uni-
variate GARCH models. Afterwards, we fit several multivariate GARCH models to
the generated data. This design allows to compare the spatial dependence of the
copula we start with and the kind of conditional spatial dependence in the fitted
multivariate GARCH model.

In the second study we generate two serial and cross dependent times series
from a bivariate GARCH model, fitting to each of the series a univariate GARCH
model, filtering the two series separately and estimate several copula models to
the two filtered series. This imitates the above mentioned strategy mostly used
in literature and practice.

The simulation design needs a lot of specification. The considered multiva-
riate GARCH models are the Constant Conditional Correlation (=CCC) GARCH
model, the diagonal BEKK and the BEKK model. As copula families we alternatively
specify the Gauss copula, the z-copula and the Clayton copula with normally or
t-distributed margins.

Our paper is organized in the following way. After a short introduction into
univariate and multivariate GARCH models and the concept of copulas in section
2, we give a brief description of the BEKK model and their relationship to elliptical
distributions in the third section. The first simulation study that generates spatial
dependent data from a copula and fits a multivariate GARCH model is presented
in section 4. In the fifth section the way of simulation and fitting goes the other
way around. Section six concludes.
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2. Basic concepts

2.1. Multivariate GARCH models

Since there exist an abundant literature and investigations on univariate
GARCH models, we just refer to Gourieroux (1997) or Jondeau and Rockinger
(2007) just to mention a few. So we skip right away to the multivariate case and
give a brief introduction to MGARCH models. For further studies we refer to
Laurent, Bauwens (2000) and to McNeil, Frey and Embrechts (2005).

Following McNeil, Frey and Embrechts we start with the definition of a strict
white noise process.

Definition 1 (X)), , is a strict multivariate white noise process (SWN) if it is
a series of stochastic independent and identically distributed (iid) random
vectors with finite covariance matrix.

Let 1, be the d-dimensional identity matrix. A multivariate GARCH process
can be defined as follows.

Definition 2 Let (Z),., be a d-dimensional SWN with mean zero and covariance
matrix 1,. The process (X,),., is said to be a multivariate GARCH process if it is
strictly stationary and satisfies equations of the form

XI zz;/z Zz’ Vte Z

where 2:/ >e R™ is the Cholesky decomposition of a positive-definite matrix
Xt, which is measurable with respect to 3, | =0 ({Xc is<t- 1}), the filtration
of the process up to time t—1.

In most applications the innovation process follows a multivariate normal
distribution, but especially for modeling daily returns a multivariate ¢-distribution
or other distributions with fatter tails than the normal one would be preferable,
as long as it has zero mean and the covariance matrix takes the form 1,

There exist various different characterizations of multivariate GARCH models
like the Vech-model of Kraft and Engle (1982) or the EGARCH of Nelson (1991).
We just consider two different very popular GARCH models for our investigations:
The CCC-GARCH model of Bollerslev because of its simplicity and in contrast
the BEKK-model of Baba, Engle, Kraft and Kroner (1995), which involves many
parameters to be estimated.
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Definition 3 The process (X,),., is a CCC-GARCH process if it is a process with
the general structure given in Definition 2, such that the conditional covariance
matrix is of the form ¥, = D,P.D, where

* P_is a constant positive-definite correlation matrix

* D, is a diagonal volatility matrix with elements ©,, satisfying:

D k.
2 _ 2 2
Oy p =0 + zukz’Xt—i,k + ZBijpj,ka k=1,...d
i-1 =

where 0, > 0, 04,20,i =1, ..,qp,20,j=1, .., q

There are some advantages of this approach, like the reduced number of
parameters. Another one is, if the conditional variances of D, are all positive
then ¥, is, too. The main problem of the CCC-GARCH model, however, lies in
the assumption of constant correlations between e.g. two financial assets, which
is rejected by empirical studies.

A different specification of Y, leads to the very flexible and very popular BEKK
model described by Engle and Kroner (1995) that overcomes the disadvantage
of constant correlations.

Definition 4 The process (X,),., is a BEKK-GARCH process if it is a process with
the general structure given in Definition 2, and if the conditional covariance
matrix Y, is given by:

b q
Zt =C+ ZA;Xt—in,—iAi + ZB; zt—j Bj ()
i=1 =1

where C is a (d, d) positive definite and symmetric matrix and A; and B, are
some (d, d)-matrices.

As long as C is positive definite Y, also is. Though the BEKK model is
one of the most flexible multivariate GARCH models its main disadvantage
is the huge amount of parameters to specify. For a simple BEKK(1,1) model
dealing with two time series, 11 parameters have to be estimated. To reduce
this problem one constrains the model to the diagonal BEKK, where A’;s and
B’;s are diagonal matrices or to the scalar BEKK model, where the A’s and B;
are simply scalars.

Another constraint which is often used in practice is to replace the matrix C
by the long-run covariance matrix equal to the sample covariance matrix.
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2.2. Copulas

In order to deal with the difficulties of defining joint distributions with arbitrary
margins and to receive a new possibility to measure the dependency between time
series, one draws back to the copula concept first introduced by Sklar (1959).

In the following we consider the bivariate case. Note that a d-dimensional
generalization could be made. However, our simulation design does not suffer
from the restriction to the bivariate case.

Definition 5 A copula is a bivariate function C: [0,1] X [0,1] — [0,1] with the
following properties:

* C(0,v) =C,0) =0,and Cu,1) = u, Clw) =v
* C(u, v) ist two-increasing, that is:

C(u,,0,)-C(u,,0,)—C(uy,0,)+C(u,,0,) 20,V ,u,,v,,0,€[0,1]
where u, = u,, v, 2 v,.

The importance of copulas is summarized in the well-known theorem of
Sklar:

Theorem 1 Let Fy and F, be the marginal distributions of some real valued,
continuous random variables X and Y and G the joint distribution function of
(X, Y). Then there exists a copula C such that, for all (x,y) € R*

G(x,)=C(Fy (x),F, (). )

Moreover, if F, and F, are continuous, then C is unique.

Conwersely, if F, and F, are the distributions of X and Y, respectively, the function
G defined by (2) is a joint distribution function with marginal distributions F,
and F,.

The theorem says that we can decompose a bivariate cumulative distribution
function into its marginal distributions and an unique copula if the marginal
cumulative distribution functions are continuous. The second assertion is the
more important one for our context. By defining two marginal distributions and
taking one copula we are capable to create any bivariate cumulative distribution
function. As indicated above the main target of the copula approach is to model
dependencies beyond the correlation. A popular measure involving copulas is
Kendall’s T (see Nelsen 20006) as a measure of concordance.

47



Ingo Klein, Christian Kock, Fabian Tinkl

Theorem 2 Let X and Y be continuous random variables whose copula is C.
Then Kendall’s tau is defined as:

1(X,Y)=4] oap € (1, 0)dC (,0) =1 = 4E[c(U,v)]-1 3)

Note that T (X, Y) is bounded between [-1, 1]. As there exists an abundant
literature dealing with copula we just refer to Joe (1997) and Nelson (20006)
for further details. We now present three copulas we are dealing with in our
simulation: The Gaussian, the Student-t (¢-copula for short) and the Clayton
copula. The first two belong to the so called elliptical family and the third to
the Archimedean family.

Definition 6 The Gaussian copula is defined by the following cumulative distri-
bution function:

o) s? —2pst +1°

1
exp
= af1-p? [ 2(1-p?)

Y where y(u) is the cdf of a standard normal distribution.

“I(u)
C,(u,v :)_[i stdt,

The parameter p € [-1,1] is Pearson’s correlation coefficient. Kendall’s T can
be achieved by the following formula:

uC,) = %arcsin(p) )

Note that (4) holds true also for the #-copula and for other members of the ellip-
tical family (see Lindskog et al. (2004)).

Definition 7 The t-copula is defined by:

T v+2 v+2
PG ) v (P' R71¢ \ 2
¢.=[" | 1+ do,
F(;]nv\/l—pz v

where ¢ = (t;l(u),t; l(D)) , and R is the correlation matrix with correlation co-
efficient p and v are the degrees of freedom, ¥ and t,(u) is the cdf of a t-distri-
butation with v do F.
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Among the class of non-elliptical copulas, archimedean copulas enjoy great
popularity.

Theorem 3 Let ¢ be a continuous, strictly decreasing function from [0,1] to
[0, o) such that ¢(1) 0 and let 07! be the inverse of 0. Then, the function from
[0,1]> — [0,1] given by:

C(,0)= 0" (0(x) +0(v))

is a copula if and only if ¢ is convex.
Moreover, if ¢! is twice continuous differentiable Kendall’s tau is given by

t
1(C)=1+4 1&6#
°0'(2)
The function ¢ is called the generator of the copula.

Definition 8 For 0(¢) = (¢° - 1)/0, with 6 € [-1, )\{0}, the Clayton copula is
obtained:

C,= max((z,fe tv0-1)" ,0)

Kendall’s tau is given by

2.3. Connecting copulas and GARCH models

Hu (2005), Jondeau and Rockinger (2006) and Patton (2000a,b) suggest to
replace the unconditional margins of a copula with conditional margins coming
from univariate GARCH models. This leads to a special case of the so-called copula
based multivariate dynamic (CMD) model.

Starting with Sklar’s theorem for conditional distributions Chen characterizes
a CMD model by

Fy oy (%, 3| ELsh)=C(Fy (x| E_3vy) B, (7] E_,30)),

Where A := (Y'y, ¥'y, 0)” is the parameter vector. Y, and v, contain fe. the
GARCH parameters of the marginal distributions and 0 is the dependence para-
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meter. Due to Chen (2007) the key feature of a CMD model is the separability of
Yx and v,. This separability insures that the parameters of the conditional marginal
distribtuions can be estimated separately before estimating the copula parameter
in a second step.

The above introduced CCC model and the dynamic conditional correlation
(=DCC) model of Engle (2002) and Tse and Tsui (2002) are special cases of the
CMD model where a normal copula and GARCH margins with normal innovations
are considered.

Other models, like the VEC model of Bollerslev, Engle and Wooldridge (1988)
and the BEKK model, don’t have separable parameters and are not members of
the class of CMD models.

3. BEKK models and elliptical Distributions

In this section we show, that the unconditional distribution of multivariate
GARCH models belongs to the elliptical family when the Innovation process is
spherical distributed. We further show under which circumstances a BEKK model
can be decomposed into its margins and common dependency part. First follo-
wing McNeil, Frey and Embrechts we give the basic definitions and properties of
elliptical distributions.

Definition 9 A random vector X = (X,,..., X)) is spherically distributed if for
every orthogonal map U € R™;

d

UX~X

and we write X ~ S_,(y) with \ the generator function of the distribution.
It is known that the multivariate normal distribution and the multivariate
t-distribution belong to the spherical family.
Definition 10 X has an elliptical distribution if:
d
X~u+AY

with 'Y ~ S,(y) and A some non-stochastic d x k matrix with Y, = AA' and we
write X ~ E,(1, X, V).
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It follows from this definition that > 2 (X — p) ~ S,(y). Elliptical distributed
rv have some interesting features as following corollary shows:

Corollary 1 If X has an elliptical distribution then:

* The margins are also elliptically distributed with X, ~ E,(W,, 2, V) Vi.

* The conditional distribution X,|S,_, is also elliptic but with a possibly dif-
ferent generator.

* Let (X,,X,) ~ E,(, X, V) then the rank correlation T is given for all members
of the elliptic family by the formula:

1(X,,X,)=2/marcsin(p).

With those results we are able to show that MGARCH models like the BEKK
models are conditionally elliptically distributed.

Theorem 4 Let X, follow a MGARCH model, then X, |3, , is elliptically distribu-
ted if and only if Z, is spherically distributed.

Proof:
Write X, =(0), +Z}*(0)Z, . Without any loss of generality we set |, = 0 and check
the conditions for elliptically distributed rv:

e Y, is measurable with respect to 3, , and non stochastic.

* Y, is positive definite a.s. V¢ € Z and thus the Cholesky-decomposition is
possible. We now set ¥}'? = 4.

o Z ~S,(y)Vie Zand thus X,|3, , ~ E,0, 3, V).

The way back is straightforward, as X, ~ E,. Then according to the definition

of an elliptical distributed rv Z, must be a spherical rv.
O

The theorem also shows, that the generator y is the same for the innovation
process and the conditional cdf of X,. For example let Z, be iid and Z, ~ N(0,1 ),
V € Z then X,|3,_, is also normally distributed and so the margins.

We now use these properties to examine the class of BEKK models. Though
they are flexible and popular MGARCH models, their main disadvantage lies in
the huge amount of parameters to estimate. Thus in practice the margins of
a (multivariate) times series are estimated in a first step, and then, in the second
step, the dependency parameters will be estimated. This two step estimation
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leads to reasonable results for example for CCC or DCC models. So, if the true
process follows a BEKK model, this procedure will be inaccurate as the BEKK
model can not be separated into its margins and a dependency function, like the
CCC or DCC models. But if one does nonetheless, the error that occurs might
be appraised.

In the following discussion we just refer to the BEKK(1,1) model for nota-
tion simplicity. For a BEKK(1,1) we have the following variance and covariance
equations:

2

2 2 2 2 2
0,1 =¢ + auX + bllct—l,l

t-1,1 + 2“11“12Xt—1,1X:—1,2 +

2 2 2
+a12Xt—1,2 + 2bllblzcst—l,12 + blZGt—],Z

2 2 2 2 2 2
0,,=Cp+ “22Xt71,2 +b226171,2 +2”22“21X171,1Xt71,2 +

2 2 2
+a21Xt—1,1 + 2b22b21(5t—1,12 + bZlct—l,l

— 2 2
Gt,lZ - CIZ + (auazz + dlzﬂn )Xt—l,lXt—l,Z + allaZIXt—l,l +

2

2 2
+a22a21Xt—1,12 + (blleZ + bleZI) Gt—l,IZ + blleIGt—l,l + b22b126[—1,2 °

Considering the above mentioned properties it is essential that
XIS, ~ E(O,nyl) and X,,|3, , ~ E(O,Gf’z). If one tries to approximate the
true marginal distribution denoted by E° with a standard univariate GARCH(1,1)
model the question arises ‘how far’ the elliptic distribution is away from E°.

To answer this question we introduce the so-called Kullback-Leibler infor-
mation (relative entropy) for measures.

Definition 11
D(P|| Q)= J'ploggd.x
where p and q are the densities of the probability measures P and Q, respectively.
The Kullback-Leibler information has the interesting property of being equal
to zero if p equals g a.s. and for every other measure being strictly positive. Let
P denote the distribution function of an estimated univariate GARCH(1,1) mo-

del and Q the distribution function of the true marginal model. We then have
following assertion.
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Theorem 5 If X, follows a diagonal BEKK(1,1) process, the margins can be
consistently estimated by an univariate GARCH(1,1) model, with the following
parameter equations for the i-th model:

Oy; =€
_ 2

Oy =a;
g2

Bli = bl,ii

Furthermore the correlation p, will be time-varying with the formula:

where

C,,=C,pt+ “11“22Xz71,1Xt71,2 + blleZGt—l,IZ .
Proof: The density function of an elliptical distribution is given by:

f(x)=ﬁg((x—u)'21(x—u))

In our case this formula reduces to:

where 7 is the i-th marginal GARCH model of the diagonal BEKK(1,1) model. The
Kullback-Leibler information is then:

(¢}

g(x}/o;
&\ /o)

D 1i
— [ plogLax = pi .
D(P|| Q) JP qu I jp og 5 g(x /o)

where p is the density of an elliptical distributed rv, with generator function g
and variance 67, which is characterized by an univariate GARCH model. Thus Q
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is the unknown conditional distribution of a diagonal BEKK model and P is the
conditional distribution of an univariate GARCH model. The only expression
of interest now is the log expression, since if it equals 1, both densities are the
same apart from a constant and D(P || Q) = 0 i.e. both distribution functions
agree. We get:

o, g(x7 /a?)
logc—l +log g(xf ; Gf,i)

The second expression equals zero only if 612’,- =O',2 as both densities have
the same density generator, and consequently 6,;, = G, as 0, has to be positive.
We now get:

2 2 yv2 2.2 _ 2 2
c;+ aiiXt—l,i + biiGt—l,l =0, + alXt—l,i + Blct—l
Comparison of the two sides leads to the result. The consistency follows from

the properties of (Q)ML estimation of the parameters.
The second result is trivial since a,, = a,, = b, = b,, = 0.

O

This result is quite general for all density generator g of a spherically distri-
buted rv.

One of the main disadvantages of the BEKK specification is that one has to
estimate all unknown parameters simultaneously. This may be a source of bias,
see Baur (2007). Thus some two step procedure would be grateful. But unfor-
tunately this can be done only for the diagonal or scalar BEKK models. With
the results obtained so far, we propose for the following estimation method for
diagonal BEKK models:

* Estimate the margins with an univariate GARCH(1,1)-model. With the formula
given in theorem 5 we get the parameter for the coefficients.

* In a second step, estimate the conditional Kendall’s tau resp. the correlation
coefficient from the data and get the parameter ¢ ,.

4. First simulation study

We now present the general setup for our Monte-Carlo-Simulation. In
a first simulation study we investigate what happens, when two univariate
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GARCH(1,1) models with different innovations processes are simulated and
(contemprarily) connected via different copulas, and then a bivariate CCC-
-GARCH(1,1) model or a BEKK(1,1) model are estimated also with different
innovation processes.

In a first step a bivariate 2 x 2500-matrix of random numbers generated from
one of the three copulas is simulated. Afterwards the two 1 x 2500 vectors with
the random numbers are transformed with the quantile function of a standard
normal, respectively of a £(5)-distribution.

Then, an univariate GARCH(1,1) with normal N(0,1) or #(5)-innovations is
adapted. Finally both time series are merged again.

We repeat this procedure 1000 times. Then at first a bivariate CCC-GARCH,
a diagonal BEKK (=Diag-BEKK) and a full BEKK' model is estimated. We look
if all three models are capable to re-find the dependency induced by the differ-
ent copulas and we look at, how sensitive the bivariate GARCH models react
if, for instance, the true innovation process is £(5) distributed and we estimate
nevertheless with normal distributed innovations, i.e. the classical QML method
like in Bollerslev and Wooldridge (1992), for instance. To make the results
comparable we let the coefficients of the univariate GARCH (1,1) models con-
stant, i.e. o, = 0.05, o, = 0.1, B = 80. We choose different parameters for the
three copulas; for Gauss p = 0.1, 0.4, 0.7, the t p = 0.1, 0.4, 0.7, df = 5 and
the Clayton 6 = 0.1362, 0.7099, 1.9497 which corresponds approximately to
the Kendall's tau of a Gaussian/t-copula with p = 0.1, 0.4 respectively p = 0.7.
The results are summarized in the next section.

We refer to the three different simulation designs as:

e case 1: N(0,1) distributed univariate innovations and N(0,1) bivariate inno-

vations

e case 2: t(df = 5) distributed univariate innovations and N(0,1) bivariate in-
novateons

e case 3: t(5) distributed univariate innovations and #(5) bivariate innova-
tions

The results are summarized in table 1. The table contains the estimated value
of the linear correlation coefficient p, the value of the maximum log-likelihood
value LL.

As it can be easily seen, the CCC, the Diag-BEKK and the BEKK models
estimate the constant correlations induced by the Gaussian copula and the
t-copula very well. As a first result it can be seen, that misspecification of the

! from now on just BEKK
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univariate GARCH models doesn’t effect the estimation of the correlation
between the two time series, which is a quite reasonable result, as it stands
in a line with the results of Bollerslev and Wooldridge (1992) for dynamic
models for conditional means and covariances. As one can see, as long as the
copulas belong to the elliptical family, all bivariate GARCH models specify the
correlation and the degrees of freedom quite well, where the Kendall’s tau
induced by the Clayton copula is estimated worse, if the innovation proces-
ses change from the classical normal-normal approach to case 2 and 3 with
6 = 0.7099 or 6 = 1.9497. The CCC nearly re-find the Kendall's tau induced
by the Clayton Copula even though this CMD approach generates a process
with more probability mass in the lower tails. Remember that we choose the
parameter of the Clayton copula in such a way, that it is equal to the Kendall's
tau of a Gaussian respectively z-copula with correlation parameter p = 0.1,
0.4 resp. 0.7. As it should be expected the CCC model, as it is nested in the
CMD context performs throughout the simulation quite well and even under
misspecification (case 2) re-find the correlation no matter which copula was
chosen. Note that even the degrees of freedom of the univariate innovation
process in case 3 were correctly specified, except the data came from a Clay-
ton-copula-GARCH model. On the other side the both BEKK models were not
able to specify the degrees of freedom correctly and they remain about 11.1
even when models were simulated with p = 0.01 or p = 0.99 and it seems as
the models were getting more extensive from case 2 to case 3 for the gaus-
sian copula-GARCH simulation, the BEKK model failed completely to re-find
correlation resp. Kendall's tau. This failure may due to numerical instabilities
when the both BEKK models estimate all parameters simultaneously and didn't
disappear even after some additional simulations. Interestingly, when the data
came from a ¢-copula-GARCH simulation, the error didn’t occur. In the Clay-
ton-copula-GARCH context there is also a considerable underestimation of the
simulated correlation resp. Kendall’s tau, but this error is much smaller than in
the gaussian copula-GARCH simulation. Also quite obvious is the decrease of
the LL of the both BEKK models from case 1 to case 2, which is at first sight not
surprising as case 2 is the misspecified one. But in scenario 3 the LLs are much
lower than in scenario 2, when the parameters of the copulas are high (p = 0.7
resp. 0 = 1.9497). Another quite astonishing result is the dramatic decrease of
the LL from case 2 to 3 for a CCC model, even though the Kendall’s T and the
df of the t-distributed innovations were correctly specified. This might due to
the numerical problems a minimization routine is facing when the negative of
a log-likelihood of an extensive GARCH model has to be evaluated, estimating
all parameters simultaneously.
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Table 1

Fitting a multivariate GARCH model to data from a copula with unvariate GARCH margins

Innovations N(0,1)&N(0,1)

GARCH CCC Diag-BEKK BEKK
Copula p LL p LL p LL
G:p=0.1 0.102 403.9 0.102 404.0 0.102 403.3
tp =0.1 0.103 406.2 0.100 405.6 0.100 406.4
C:6 = 0.1362 0.119 688.7 0.118 688.2 0.118 688.2
Gp=04 0.401 608.4 0.401 608.4 0.401 607.9
tp =04 0.396 606.0 0.396 605.4 0.396 606.1
C:0 = 0.7099 0.441 848.3 0.441 847.9 0.441 847.9
G:p =07 0.700 1233.1 0.700 1232.7 0.700 1233.1
tp =0.7 0.695 1215.3 0.695 1215.4 0.694 1214.8
C:0 = 1.9497 0.716 1419.1 0.716 1414.5 0.716 1414.5
Innovations t(df=5)&N(0,1)
CCC Diag-BEKK BEKK
p LL p LL p LL
G:p=0.1 0.098 -868.0 0.097 -868.6 0.097 -869.3
t: =0.1 0.102 -863.1 0.101 -864.7 0.101 -862.6
C:0 = 0.1362 0.127 -314.9 0.127 -315.6 0.127 -315.7
Gp=04 0.390 -671.1 0.390 -672.5 0.390 -671.1
tp =04 0.402 -663.6 0.402 -665.1 0.401 -663.25
C:0 = 0.7099 0.464 -230.0 0.465 -230.9 0.465 -230.8
G:p =07 0.689 -76.0 0.688 -76.0 0.688 -77.1
tp =0.7 0.701 -38.0 0.701 -38.9 0.701 -37.6
C:0 = 1.9497 0.723 299.15 0.724 298.8 0.724 298.8
Innovations t(df=5)& t(df=5)
CCC Diag-BEKK BEKK
p/df LL p/df LL p/df LL
G:p=0.1 0.097/5.0 | —4998.3 | 0.089/11.1 | -692.8 | 0.090/11.1 -693.4
tp=0.1 0.100/5.2 | -4961.7 | 0.096/11.1 | -636.7 | 0.095/11.1 -636.1
C:0 = 0.1362 0.126/9.4 | -5398.4 | 0.109/11.1 | -266.0 | 0.109/11.1 -266.0
Gp=04 0.389/5.0 | -4963.2 | 0.380/11.1 | -507.3 | 0.378/11.1 -507.1
tp =04 0.401/5.2 | —4904.9 | 0.399/11.1 | -453.3 | 0.399/11.1 -452.9
C:0 = 0.7099 0.466/6.4 | -5110.1 | 0.401/11.1 | -168.4 | 0.402/11.1 -168.1
G:p =07 0.688/5.0 | —4945.9 | -0.485/11.1 | -1676.1 | -0.475/11.1 | -1676.1
tp =0.7 0.700/5.3 | -4906.8 | 0.705/11.1 | -214.8 | 0.720/11.1 -245.8
C:0 = 1.9497 | 0.723/6.2 | -5074.2 | 0.365/11.1 | —-634.22 | 0.360/11.1 -620.4
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5. Simulation design

At first we simulate a bivariate CCC-GARCH(1,1) process of length 2500 with
either normally or t(5) distributed innovations, then split the 2 x 2500 matrix
into two time series vectors and fit for each vector an univariate GARCH(1,1)
process with also normally and #-distributed innovations, respectively. Afterwar-
ds we estimate the parameters of our three copulas one by one and look, if the
copula-GARCH models are able to re-find the constant correlation of the CCC-
-GARCH(1,1) model.

We do this also for a Diag-BEKK(1,1) and a BEKK(1,1) model. As in step
one we repeat the procedure 1000 times. As the CCC-GARCH induces constant
correlation we again choose three different correlation coefficients

* Model 1: p = 0.1

* Model 2: p = 0.4
* Model 3: p = 0.7

For the two BEKK models the situation is slightly different, as the correlation
can only be determined indirectly via different parameter models. We refer to the
following parameters as model 1 to 3. For the Diag-BEKK we have:

e Model 4: C=(3’10%3),A=(3‘250,02),B=(3’9o,02)
° Model5: C:(g'() 32),142(315 0_02),32(35 ()(;)
e Model 6: C:(g'l 02;2)714:(8'25 0%2)73:(2'70.0(5))

And for the BEKK(1,1) models we have in analogy to Hafner & Herwartz (2008):

o Model 7: C=('03),4= (05 0%)B=(03 ")
o Model 8: C=(3°03),A= (00 ons)-B=(01703)

_ {01 03 _ (025 -0.05 _ (09 -0.05
* Model 9: C = (0 0.05)’A - (0.05 0.25)’3 - (0.05 0.9)

The different models induce different correlations resp. rank correlations. As
mentioned above the Clayton copula is unable to measure correlation, we just
refer to Kendall’s tau and convert the coeficient of all three copulas to Kendall’s
tau. We get following taus for our simulation scenarios (table 2 and 3):
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Table 2

Kendalls T values for the simulation scenarios

Innovations N(0,1)

M1 M3 M4 M5 M6 M7 M8 M9
T 0.07 0.28 0.52 0.077 0.36 0.49 0.07 0.40 0.49
Innovationst(df=>5)
M1 M3 M4 M5 M6 M7 M8 M9
T 0.70 0.28 0.51 0.42 0.44 0.88 0.07 0.40 0.49
Table 3
Fitting a copula with univariate GARCH margins to data steming from a multivariate
GARCH model
Innovations N(0,1)&N(0,1)
Copula/ .
GARCH CCCC-GARCH (1.1) Diag-BEKK(1.1) Full-BEKK(1.1)
Model M1 M2 M3 M4 M5 M6 M7 M8 M9
Gauss: T 0.069 0.261 0.493 0.078 | 0.359 0.486 0.071 | 0.401 | 0.487
sd 0.019 0.016 0.008 0.019 | 0.012 0.009 0.019 | 0.011 | 0.009
LL -0.5 -107.9 | -537.1 | -13.4 |-313.6 | —611.6 | -0.5 |-320.4 [ -530.0
T 0.062 0.260 0.492 0.076 | 0.358 0.485 0.066 | 0.399 | 0.488
sd 0.020 0.016 0.009 0.020 | 0.013 0.009 0.009 | 0.012 | 0.020
daf 29.69 29.73 29.87 | 29.80 | 29.89 | 29.80 | 29.05 | 29.84 | 26.94
LL 1.2 -160.3 | -728.6 | -17.6 | —422.4 | -815.8 2.0 —428.9 | -715.4
Clayton: T: 0.045 0.195 0.382 0.048 | 0.271 0.376 0.048 | 0.304 | 0.380
sd 0.024 0.031 0.043 | 0.024 | 0.035 | 0.042 | 0.024 | 0.037 | 0.042
LL -0.5 -107.9 | -537.1 | -13.4 |-313.6| -611.6 | -0.5 |-320.4 | -530.0
Innovations t(df=5)&N(0.1)
Copula/ .
GARCH CCCC-GARCH (1.1) Diag-BEKK(1.1) Full-BEKK(1.1)
Model M1 M2 M3 M4 M5 M6 M7 M8 M9
Gauss: T 0.070 0.270 0.502 0.408 | 0.432 0.880 0.071 | 0.413 | 0.493
sd 0.019 0.015 0.008 0.011 | 0.010 0.0 0.019 | 0.011 | 0.008
LL 5.3 -156.2 | —474.0 | -557.1 | -630.9 | —4200.5 1.1 | —479.6 | -753.0
6T 0.065 0.271 0.504 0.412 | 0.434 0.881 0.067 | 0.414 | 0.494
sd 0.020 0.016 0.008 0.012 | 0.011 0.001 0.020 | 0.011 | 0.009
df 29.601 28.95 26.89 9.61 |25.680| 18.554 |29.788 |28.091 | 27.106
LL 2.2 -155.1 | -469.3 | -577.3 | -633.5 | -4218.3 | -1.0 |-483.6 | -756.3
Clayton: T: 0.047 0.203 0.391 | 0.322 | 0.332 | 0.816 | 0.047 | 0.315 | 0.382
sd 0.024 0.032 0.044 | 0.038 | 0.039 | 0.175 | 0.024 | 0.038 | 0.043
LL -0.1 -93.1 -337.0 | -436.1 | -471.7 | -3429.4 | -1.3 |-343.9|-543.3
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Table 3 cont.

Innovations t(df=5)&t(df=5)

(c:,(;l;:;l: CCCC-GARCH (1.1) Diag-BEKK(1.1) Full-BEKK(1.1)

Model M1 M2 M3 M4 | M5 M6 M7 | M8 | M9
Gauss: T 0.071 | 0271 | 0503 | 0.407 | 0.432 | 0.880 | 0.070 | 0.413 | 0.493
sd 0.008 | 0015 | 0.019 | 0.011 | 0.010 | 0.001 | 0.019 | 0.011 | 0.008
LL 0.8 | -140.5 | —476.8 | -554.9 | -631.3 | -4195.2| 0.1 |-489.4 |-756.8
1 0504 | 0272 | 0.067 | 0.411 | 0.434 | 0.881 | 0.067 | 0.414 | 0.494
sd 002 0.016 | 0.008 | 0.012 | 0.011 | 0.001 | 0.020 | 0.011 | 0.009
df 29.680 | 28.931 | 26.876 | 9.788 |26.036 | 18312 |29.779 | 28.106 | 27.474
LL -1.0 | -139.2 | —471.7 | -574.6 | -633.7 | -4214.0 | 0.2 | -492.0 | -763.0
Clayton: T: | 0.048 | 0204 | 0392 | 0322 [ 0332 [ 0816 | 0.046 | 0.315 | 0.383
sd 0.024 | 0.032 | 0.044 | 0.038 | 0.039 | 0.175 | 0.020 | 0.011 | 0.009
LL -1.2 -102.0 —338.8 | 434.3 | —472.2 | -3427.2 | -1.5 |-347.2|-544.1

We now present the results of the simulation. In all simulation circumstances it
can be seen that a CMD model with Gaussian or #-copula re-finds the (rank) corre-
lation of the simulated data regardless whether a CCC, Diag-BEKK or BEKK model
is used. The CMD model with a Clayton copula in contrast isn’t able to capture the
assumed Kendall’s tau. This underlines the importance of a correct copula specifi-
cation within a model. As shown by Chen (2007) moment-based specification tests
for copulas are able to detect misspecification of a selected copula model.

As the t-copula in the most cases has a huge number of degrees of freedom,
it differs not really from a Gaussian copula. The degrees of freedom reduce
when the simulated correlation resp. Kendall’s tau is increased. Through all the
different simulation designs it can be seen that a QML estimation does not per-
form worse than the estimation with the correct innovation process, when one
is interested in the dependency between time series. The asymptotic properties
shown be White (1994) and Bollerslev, Wooldridge (1992) for the QML resp. a two
step QML (2SQML) estimation of GARCH can be re-find even in relatively small
sample sizes as shown by our work. Of course further studies have to be made
to investigate the differences and the advantages of CMD-models with different
error distributions, but in our study the misspecified ones perform well against
the background of the additional computational burden a complicate error distri-
bution implicates. The copula-GARCH models seems also suitable for BEKK and
Diag-BEKK models even though these are in a different class of GARCH models.
For the Diag-BEKK this is the result of the section 3, where the estimation method
used in this simulation study is proposed. For the general BEKK model this is due
to the assertion of theorem 4, that because of the spherical error distribution,
we stay in an elliptic world, so that the both elliptic copulas perform very well in
re-finding the correlation induced by the BEKK model.
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6. Conclusion

In our study it can be seen, that CMD models are flexible tools for investiga-
ting different times series with GARCH structure for the squared residuals. This
holds even under misspecification and in situations where GARCH models are
simulated which are direct generalization of the univariate ones like the simulated
BEKK and Diag-BEKK. We proved that as long as the error distribution of a GARCH
model belongs to the spherical distribution family, the conditional distribution of
such a model follows an elliptical distribution. Moreover a two step estimation
procedure for diagonal BEKK models is established.

In praxis one may be interested in the dependency of different time series and
therefore have an eye for the Kendall‘s tau or correlation between the two series.
In this situation a CMD model can be a helpful tool to investigate the dependency
structure and estimate coevally less parameters than in a BEKK model. The other
way around instead shows that when data where simulated from a CMD model
the only GARCH model which seems to fit the data in all circumstances were the
CCC-GARCH, which isn‘t surprising as it is a subclass of the CMD models. Moreover
the importance of a correct copula specification is essential for the application
of a CMD model as can be seen in our study. Thus, copula (mis-)specification
should play a key role before the adaption of a CMD model.
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