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Spatial-serial dependency in multivariate garch models...

GARCH(1,1) models with different innovations processes are simulated and 
(contemprarily) connected via different copulas, and then a bivariate CCC- 
-GARCH(1,1) model or a BEKK(1,1) model are estimated also with different 
innovation processes.

In a first step a bivariate 2 x 2500-matrix of random numbers generated from 
one of the three copulas is simulated. Afterwards the two 1 x 2500 vectors with 
the random numbers are transformed with the quantile function of a standard 
normal, respectively of a t(5)-distribution.

Then, an univariate GARCH(1,1) with normal N(0,1) or t(5)-innovations is 
adapted. Finally both time series are merged again.

We repeat this procedure 1000 times. Then at first a bivariate CCC-GARCH, 
a diagonal BEKK (=Diag-BEKK) and a full BEKK1 model is estimated. We look 
if all three models are capable to re-find the dependency induced by the differ
ent copulas and we look at, how sensitive the bivariate GARCH models react 
if, for instance, the true innovation process is t(5) distributed and we estimate 
nevertheless with normal distributed innovations, i.e. the classical QML method 
like in Bollerslev and Wooldridge (1992), for instance. To make the results 
comparable we let the coefficients of the univariate GARCH (1,1) models con-
stant, i.e. α0 = 0.05, α1 = 0.1, β = 80. We choose different parameters for the 
three copulas; for Gauss ρ = 0.1, 0.4, 0.7, the t ρ = 0.1, 0.4, 0.7, df = 5 and 
the Clayton θ = 0.1362, 0.7099, 1.9497 which corresponds approximately to 
the Kendall's tau of a Gaussian/t-copula with ρ = 0.1, 0.4 respectively ρ = 0.7. 
The results are summarized in the next section.

We refer to the three different simulation designs as:
•	 case 1: N(0,1) distributed univariate innovations and N(0,1) bivariate inno-

vations
•	 case 2: t(df = 5) distributed univariate innovations and N(0,1) bivariate in-

novateons
•	 case 3: t(5) distributed univariate innovations and t(5) bivariate innova-

tions

The results are summarized in table 1. The table contains the estimated value 
of the linear correlation coefficient ρ, the value of the maximum log-likelihood 
value LL.

As it can be easily seen, the CCC, the Diag-BEKK and the BEKK models 
estimate the constant correlations induced by the Gaussian copula and the 
t-copula very well. As a first result it can be seen, that misspecification of the 

1	 from now on just BEKK
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