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1. Introduction

Dependence structures in capital markets have recently attracted increasing 
attention among economists, empirical researchers, and practitioners. In order 
to control a portfolio for risks, portfolio managers and regulators have to take 
into account a degree of dependence between international equity markets when 
studying returns across international financial markets. Therefore, the topic of 
asymmetric dependence structures, such as high dependence in a bear period of 
the stock market is very important for both the risk control and the policy man­
agement. In addition, the benefits derived from an international diversification of 
asset allocation are often affected by asymmetric dependence structures.

It is well known and widely discussed in the literature that linkages among 
international capital markets are mostly asymmetric. From this asymmetry re­
searchers draw a conclusion that in a bear phase, returns tend to be more inter­
related than they are in a bull phase of capital markets. From this observation 
serious theoretical consequences for an international portfolio follow. The most 
important implication is a possible loss o f diversification benefits in a bear time 
due to the rise in the dependence among capital markets. In other words, inter­
national portfolios become much more risky in bad times of stock markets that 
assumed in good times. The observed asymmetric dependence is an essential 
source of rise in the costs of a diversification with foreign equities.
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In this article we investigate how model selection affects the calculated risk 
of financial position. The two standard models are mean-variance Markowitz 
model and multivariate GARCH model. Both models assume symmetric and thin­
tailed distributions of returns, in particular they assume the normal distribution. 
Recently developed models based on copula functions are both flexible and con­
venient to model anomalies in distributions, such as an asymmetry or fat-tails. In 
this article we focus on regime switching copula models. We consider two risk 
measures: Value at Risk and Expected Shortfall. The expected risk derived on the 
basis of the regime switching copula model is compared to the expect risks ob­
tained by using the Markowitz model and the multidimensional GARCH model.

A model misspecification may cause a number of problems. Incorrect evalua­
tion of the expected value of a financial position is one o f the most serious draw­
backs of the financial models. However, a risk underestimation may cause even 
worse consequences. Most of risk measures are strongly, or entirely, dependent 
on distributions of tails. Especially, the dependence of extreme assets’ values 
substantially affects the distribution of the portfolio value. Therefore, an omis­
sion of an asymmetry or a high kurtosis of assets’ distributions may be a reason 
for a miscalculation of risks.

The remainder of the contribution is organized in the following way: in sec­
tion 2 we conduct the literature overview concerning the dependence concepts, 
including regime switching models and copulas and discuss the recent contribu­
tions to the subject; in section 3 the dependence measures and copulas are over­
viewed; in the following section the copula regime switching model is described; 
in the fifth section risk measures based on copula models are discussed; in the 
sixth section we present the data, report and discuss the results; section 7 con­
cludes the paper.

2. Literature overview

Relations among international stock markets have been investigated in many 
papers, especially in the period of the financial crises. The topic under study 
is important for market participants, because, due to the globalization process, 
the global markets are becoming more and more dependent. This observation 
follows from the liberalization and deregulations in both money and capital 
markets. In addition, the globalization process diminishes opportunities for 
international diversification.

Numerous recent studies deal with an asymmetry in dependence structures 
in international stock markets. They reveal two interesting asymmetries. The de­
pendence tends to be high in both highly volatile markets and bear markets.
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While in some studies, the evidence of the first type of asymmetry is shown, 
several other studies found the second asymmetry. In one of the earliest contribu­
tion, Hamao, Masulis, and Ng [18] investigated the relations among equity mar­
kets across Japan, the U.K., and the U.S. using the daily data of stock indices. The 
authors estimated the GARCH-M model. Using this model the authors established 
volatility spillover effects from the U.S. and U.K. stock markets to the Japanese 
market. King and Wadhwani [23] developed a contagion mechanism model. They 
detected contagion effects. The contributors stressed that an increase in volatility 
by using a high frequency data from the stock markets in Japan, the U.K., and the 
U.S strengthened these effects. These findings were supported to some extent by 
Lin et al. [26] who analysed two international transmission mechanism models 
based on the daily returns of stock indices in Japan and the U.S. Erb et al. [14] 
found that monthly cross-equity correlations among the G7 countries were high­
est when any of two countries were in a recession. In addition, the contributors 
claimed that they are much higher in bear markets. In the paper by Longin and 
Solnik [27], the monthly data of stock indices for several industrial countries 
were analyzed. The contributors, using a multivariate GARCH model, found that 
the correlations between major stock markets raised in periods of a high volatil­
ity. On a basis of the multivariate SWÄRCH model, Ramchand and Susmel [36] 
found that monthly returns of stock markets in the U.K., Germany, and Canada 
tended to be essentially more correlated with the U.S. equity market during pe­
riods of a high U.S. market volatility. The similar results could be found in King, 
Sentana, and Wadhwani [22], Ball and Torous [5], Bekaert and Wu [6], Ang and 
Bekaert [2], and Das and Uppal [10].

Following Davison and Smith [11] and Ledford and Tawn [25], Longin and 
Solnik [28] derived a method to measure the extreme high correlation by the 
conditional tail correlation based on extreme value theory. The contributors es­
tablished that the conditional correlation between the U.S. and other G5 coun­
tries strongly increases in bear markets. In contrary, the conditional correlation 
does not essentially increase in bull markets.

In more recent studies by Campbell et al. [7], Ang and Bekaert[2], Das and 
Uppal [10], Patton [34], and Poon et al. [35], the existence of two regimes in 
international equity markets was suggested: a high dependence regime with low 
and volatile returns and a low dependence regime with high and stable returns.

Based on this hypothesis, Ang and Bekaert [2] estimated a Markov switch­
ing multivariate normal (MSMVN) model using the U.S., the U.K., and German 
monthly stock indices. The contributors detected some evidence that a bear 
regime is characterized by low expected returns, high volatility, and high cor­
relation, whereas a normal regime is characterized by high expected returns, 
low volatility, and low correlation. Their model was able to replicate Longin and
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Solnik’s [28] results. Referring to Ang and Chen [2], they demonstrated that an 
asymmetric bivariate GARCH model, widely used in the literature to analyze the 
international stock markets, cannot replicate them.

In recent times, copulas have become a major tool in the finance for model­
ling and analyzing dependence structures between financial variables. In contrast 
to the linear correlation, the copula reflects the complete dependence structure 
inherent in a random vector (see [13])· In finance, copulas have attracted much 
attention in the calculation of the Value-at-Risk (VaR) of market portfolios (see 
e.g. Junker and May, 2005; Kole et al., 2007 and Malevergne and Sornette, 2003) 
and the modelling o f the credit default risk.

Ball and Torous [5] and Guidolin and Timmermann [17] investigated the 
economic significance of their empirical findings from a risk management point 
of view. Rodriguez [37] used copula model with Markov switching parameters. 
Okimoto [32] stressed that ignoring the asymmetry in bear markets could be 
costly when risk measures are evaluated. In his contribution, using a copula 
based regime switching Markov model, he concentrated on the value at risk (VaR) 
and expected shortfall (ES).

According to his calculation, ignoring such an asymmetry in bear markets 
significantly affects risk measures, i.e. the 99% VaR is undervalued by about 10%, 
while the expected shortfall is undervalued by about 5% to 10% consistently over 
the whole significance level between 90% to 99%. This is essential for the risk 
management.

The empirical literature on the optimal choice of the parametric copula fam­
ily for the VaR-estimation can be clustered into three groups.

The first group of contributors claims that the elliptical copulas are opti­
mal. The representative of this stream of papers is e.g. paper by Malevergne and 
Sornette [29]. This is one of the first empirical studies on the optimality of cop­
ula models for the modelling of dependence structures of linear assets. The au­
thors, based on the dataset consisting of six FX futures, six commodity prices and 
22 stocks listed on the NYSE, demonstrated that the dependence structures of 
the majority of bivariate portfolios built from these assets can be correctly reflect­
ed by a Gaussian copula. However, in the opinion of the contributors, their result 
can be biased. The reason is that Student’s t copula can easily be mistaken for 
a Gaussian copula. In addition, Malevergne and Sornette [29] did not include the 
estimation of a risk measure or Goodness of Fit -tests (abbreviation GoF-tests). 
Kole et al. [24] found, on the basis of just one trivariate portfolio (one stock-, one 
bond- and one REITS-index), that the Student’s t copula is the best for modelling 
the dependence structure of linear assets. DiClemente and Romano [12] using 
the 20-dimensional portfolio of Italian stocks, demonstrated that a model incor­
porating margins following an extreme value distribution and an elliptical copula
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can yield much better VaR-estimates than the classical correlation-based model. 
However, they used neither Archimedean copulas nor copula-GoF- tests. In con­
tribution by Fantazzini [15], it is shown that three bivariate portfolios built from 
stock indices can be well modelled by a constant or dynamic Gaussian copula in 
order to estimate VaR properly.

The second stream of studies justifies an optimality of Archimedean copu­
las. Junker and May [21] argued that a transformed Frank copula with GARCH 
margins can improve VaR- and ES-estimates in comparison to elliptical copula 
models. However, their conclusions are based solely on the single bivariate port­
folio of German stocks. In addition, they only apply GoF-tests for general distri­
butions. They were not adjusted to the characteristics of copulas. Similar results 
were presented by Palaro and Hotta [33] for the bivariate portfolio based on 
the S&P 500- and the NASDAQ- index. The authors showed that a symmetrised 
Joe-Clayton copula joint with GARCH margins performs significantly better than 
elliptical copula models.

Recent studies, belonging mostly to a third cluster of research, demonstrate 
that the optimal parametric copula as well as the strength and structure of the 
dependence between asset returns are not constant over the time. In order to 
allow the parametric form of the copula to change over time more recent studies 
like the ones addressed above Rodriguez [37], Okimoto [32], Chollette, Heinen, 
and Valdesogo [8] and Markwat, Kole, and van Dijk, [31], Weiss [38] apply the 
convex combinations of copulas. The contributors drew a conclusion that more 
flexible mixture copula models yield better VaR and ES estimates than uncondi­
tional copula models.

The contributors stressed that copula models perform better than correla­
tion-based models with respect to the estimation of VaR. This was the case when 
the optimal parametric copula family was known ex ante.

The main aim of this contribution is a comparison of the expected shortfall 
for returns derived on the basis of the Markowitz model, the multidimensional 
GARCH model and the copula regime switching model.

3- Dependence measures based on copulas

The correct evaluation of the dependence between assets’ interest rates is essential 
for an accurate assessment of an investment risk. In the case of risk management, 
the dependence between negative values, in particular between extreme negative 
values plays a key role. Especially, if such a dependence is substantial, then an 
investor can lower the risk by diversification of a portfolio to less than expected. 
In this section we present some functions measuring the dependence between
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random variables and discuss their intuitive meaning. Moreover, we describe the 
presented dependence measures’ relationship with copulas.

3.1. Exceedance correlation coefficient

The most traditional dependence measure is Pearson correlation. However, 
it measures only linear dependence and works only in the range of the spheri­
cal and elliptical distributions. The exceedance correlation is the generalized 
Pearson coefficient which measures asymmetric dependence. It is defined as the 
correlation between two variables, conditional on both variables being below or 
above some fixed levels. Exceedance correlation coefficients between random 
variables X  and Y  are defined as:

eco rr^  (X ,Y )  := corr(X ,Y\X  < Θ, ,Y  < θ2), (1)

ecorr,\ (X ,Y )  := corr(X,Y\X > θ, ,Y > θ2), (2)

where eco rr^  is lower exceedence correlation, eco rr^  is upper exceedence cor­
relation and θ , θ2 are fixed thresholds.

Properly calculated exceedance correlation would be an efficient tool in risk 
management, where negative extreme values of an investment return are crucial. 
However, this coefficient has some drawbacks. For instance, it is computed only 
from observations which are below (above) the fixed limit. Therefore, as the limit 
is further out into the tail as exceedance correlation is computed less precisely. 
Another inconvenience with the exceedance correlation is that it is dependent on 
margins, thus it cannot be calculated only from the copula connecting variables.

3.2. Tail dependence

Another tail dependence measure is quantile dependence. For random 
variables X  and Y  with distribution functions F  and G, respectively, the lower tail 
dependence at threshold a  is defined as p \y  < G 1 (a)|Af < F  1 (ot)J. Analogously, 
the upper tail dependence at threshold a  is defined as p\ji > G ' (ot)|X > F 1(a)]. 
The dependence measure which is particularly interesting is the tail dependence 
obtained as the limit of a quantile dependence. We define lower tail dependence 
λ^οί X  and Y  as:

XL = 1 ™ ρ Γτ < ^  1(a)| X < F"1(a)1, (3)
a -»0 + L

and upper tail dependence A (of X  and Y  as:

λ„ = Н т Р Г г > С _1(а)|АГ>/?"1(а)1. (4)а->1 L
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Variables X  and Y  are called asymptotically dependent if XLe (0,1] and as­
ymptotically independent if λ = 0 For variables connected by the copula C, lower 
tail dependence \  and upper tail dependence λ; can be computed as follows:

λ L =  lim
0+

C{u,u)
>u (5)

λ и
, С (и, и

= lim—------,
«-u- 1 — и (6)

where С is the survival copula defined by:

С (n,v) = C ( l - u , l - v ) - u - v  + iu, for и,и e (0,1] (7)

Unlike exceedance correlations, tail dependence is independent of margins. In 
the most cases, for a given copula, one can simply calculate tail dependences using 
formulas (5) and (6). In Table 1, we present results for the copulas used in the paper.

Table 1
Tail dependencies for Gaussian, BB1, BB4, BB7 copulas

К

ç  Gauss
0 0

f i B B i i 1
2  δθ 1 - 1 δ

£^ΒΒ<\
2  ¿

f -^ΒΒη
θ ,δ 2  ö

(Μ1(Μ

3-3. Kendall’s x

Another class of dependence measures is based on ranks of variables. The 
two most popular rank correlations coefficients are Kendall’s τ and Spearman’s 
p. Both rely on the notion of the concordance. Let (xt, у  t ) and (pc2, y 2) be two 
observations of the random vector (X, Y). We say that the pair is concordant 
whenever (y t - y 2)(x1 - x 2) > 0 , and discordant whenever (y1 - y 2) (xl -  x ¿) < 0. 
Intuitively, a pair of random variables are concordant if large values of one vari­
able occur more likely with large values of the other variable.

For random variables X  and Y, Kendall’s τ is defined as:

Т =  Р [ ( У 1 - У 2 ) ( Х 1 -  X 2 ) > ° ]  -  Ρ [ ( Ά  -  У 2 ) ( Λ’ΐ -  *2 ) < О],
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where (д:, у J  and (x2, y?) are independent observations of (X, Y). In terms of 
copulas, Kendall’s τ has concise form. For the pair of random variables X  and Y  
and its copula C, we have:

Since copula is invariant with respect to any monotonie transformation, 
Kendall’s τ has also this property. From the formula (8) we see that Kendall’s τ 
does not depend on marginal distributions.

4. Compared models

In this section we present the regime switching copula model with GARCH 
margins and the estimation procedure. Other models used in this article are: 
the Markowitz model and multivariate Generalized Autoregressive Conditional 
Heteroscedasticity (mGARCH) model.

The Markowitz model is a standard model introduced by Markowitz. This 
model is based on a normal distribution assumption and does not include any 
dynamic changes. There are numerous papers stressing the inadequacy of this 
model. We believe that there are still individuals using this method. Thus, we 
decided to compare this method to other in the context of our study. Markowitz 
model’s parameters can be equivalently estimated using the likelihood function 
maximization or the least square method.

Switching models were introduced by Hamilton [ 19] and widely analyzed by 
Hamilton [20]. Let y t = (ylt, y 2t) be a pair of interest rates of analyzed indices, and 
let Yt = (yt, y  , y  be the series of observations available at the time t.

We denote the two-state Markov state process by st, which has two possi­
ble values, say 1 and 2, we call these states regimes. We choose the first regime 
copula from copulas with non-zero tail dependencies, namely BB1, BB4 and BB7 
copulas. The second copula is the Gaussian copula, which corresponds to sym­
metry and tail independence of the investigated variables.

The conditional joint density function/fory fis defined as:

where F. and f., for i = 1,2 , are the marginal distribution functions and density 
functions of corresponding variables, and δ. is a parameter vector for the mar­
ginal distribution. The probability that the state i precedes the state j  is denoted 
bypiJ = P\st =j\st_1 = i\.

(8)
[ 0,1]2
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All four probabilities form transition matrix:

P = >11 Ρΐ2Ί " Pu M

__
_1

.Pi 1 P22 _ .1 — P22 P22
(10)

The estimation of the regime switching copula model is based on the 
maximum likelihood estimation. Unfortunately, the computing power need­
ed to maximize likelihood function is enormous. To simplify the calculation, 
the decomposition of likelihood function to margins likelihood functions and 
the dependence likelihood function is performed. Formally, for a given sample 
Y  =  (YV Y2>···) Yj) > the log-likelihood function is defined by:

Z(F;5,0) = ¿ l i V ( T j r f_i ;8,0),
t= 1

and it is decomposed t o Lm andZ.such that:

Ζ(Τ;δ,θ) = Lm (Y ;δ) + Lc (Τ ;δ ,θ),
where:

^ ( y ;8) = t [ llV i( j lf Κ ^ -ιΐδΟ ί + Ι η ^ ί ^ Κ ^ ΐ δ , ) ) ] ,  (11)
t=1

Lc (Y ; δ,θ) = Y in c lą  (ylt I {y 2t\(Y2t-1- A y Ą  (12)
t= 1

The parameters of the model are estimated as follows. In the first step we 
estimate the parameters δ : and δ2 of the marginal distribution. This step is per­
formed by the maximization of the likelihood function defined by (11). In the 
second step we maximize the likelihood function defined by (12) to estimate 
parameters θ χ and θ2 of copulas c(I)and c(2), and transition matrix given by (10). 
Note that parameters δ  ̂δ2, Θ are in fact collections of parameters.

A method of the estimation of marginal distributions depends on the model 
which is chosen to describe the specific marginal variable. To model the mean of 
a time series, we use the simple autoregressive model. As we mentioned before, 
usually for time series of returns hypotheses of normal distribution of residuals 
are rejected. In particular, investigated time series are fat-tailed, asymmetric and 
heteroscedastic. Therefore, for every analyzed time series r , we use the following 
AR(1)-GARCH(1,1) model:

Г»=Фо+Ф1Г,-1+Е, (13)

ht = ω + asf_j + ßf7f_1 for ω > 0, a > 0, β > 0; (14)

where &t =  htet and et is a white noise. Although, with respect to an asymmetry 
and a fat tail, et is described by the skewed Student-/ distribution. The skewed
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Student-f is a two parameter distribution. For v > 2 and λ e [-1,1], the skewed 
Student-f density function, denoted by St, is defined by:

be 1 + -

5i U ) :

be 1 +

1 " b x  +  a '
2>

v - 2 {  l - λ  J J

1 b x  +  a '
2\

v - 2 < 1 +  λ  , )

- ( v + l )

d la x < -—

- (v +l)
(15)

d la x > -—

/
where a  = 4Xc

v -  2
v — 1

\

/
,6=VI+3>7- a 2 ,c =

The second step is the estimation of copulas parameters and transition prob­
abilities. To do so, we use Hamilton filter. For the transition matrix P  given by 
(10), we define:

%t\t
ξ^-χΟη»

( 16)

(17)

where ξ(Ιι = P[st = j\ Kf;0] and ξ(_1( = F’[s,_1 = j\ T(;0] the Hadamard’s multipli­
cation denoted by Θ means the multiplication coordinate by coordinate. The 
vector of copulas’ densities is denoted by i]t,

fit =
C(1) (i^(i/lf ;δ,) , (y2f ;δ2 );θ1 )" 

c(2) (i^(i/lf ;δ,) , (y2f ;δ2 );θ2)_ '
(18)

The log-likelihood function defined by (12) for the observed data can 
be written as:

T

Lc (F  ;δ>θ) = Σ 1η(ιΓ © fit))» (19)

where the initial value ξ1|0 is the limit probability vector:

1 P22 

2 ~ Pu ~ P22 

1 ~Pn 
2 — — P22

(20)
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Models based on mGARCH have been recently broadly used and modified. 
In this article, conditional mean dynamics is described by the VAR(l) model. For 
details of the recent study we refer to Croux and Joossens [9] · To model condi­
tional correlation, we use the Dynamic Conditional Correlation (DCC) model 
with normal conditional distributions.

Under this model the conditional mean of the multidimensional time series 
y  at the time t is computed as follows:

E[yt I Ω._! ] = μ + Ay, , + ε,, (21)

where μ  is constant, Ot is the information set available at the time t and A is a vec­
tor autoregressive matrix. The error term ε, at the time t is defined by:

st = tft(1/2)zt, (22)

where z, is a sequence of A'- dimensional, in our case N = 2, i.i.d. random vector 
with the following characteristics:!;^) = Oand Λ’(ζ, zf) = IN, therefore ζ —Νφ,Ι^.  
The dynamic covariance matrix II, is decomposed to:

H, = DtRtDt, (23)

where Df is a dynamic variance matrix and R, is a dynamic correlation matrix. In 
the two-dimensional case, D, = diag (^6,,,  , J b 22t j , where

h, = ω + αε,_! Θ ε,^ + . (24)

The correlation matrix R{ is decomposed as follows:

Rt = {diag(Q, )[  ̂ · Q, ■ {diag(ß, )}_5 . (25)

The correlation driving process Q is defined by:

Qt = (1 -  a  -  ß) Q + u.P; , + ßÖ, ,, (26)

where Q denotes unconditional correlation matrix of the stantarized errors and 
p ; = {diag(Ö  )}'T · d ; 1 ■ Q, ■ d ; 1 ■ {diag(Qt )}■T . (27)

This particular specification of the DCC model has been proposed by Ailelli [1].

5. Portfolio optimization

The portfolio optimization problem is widely analyzed. There are two main 
goals to achieve in any portfolio optimization problem. The first aim is the maximi­
zation of the expected value of the portfolio. The most natural way is to maximize
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the expected nominal value, a generalization of this approach is the maximization 
of an expected utility. In this article, we do not consider utility functions, for more 
details about a maximizing an expected utility see Föllmer and Schied [16]. The 
second aim in the portfolio optimization is to minimize a risk. There are numer­
ous approaches to a concept of risk. The most standard understanding of a risk is 
an uncertainty. For any portfolio, its risk may be understood as the variance of the 
future value of the portfolio. This concept was firstly introduced in [30] and the 
corresponding portfolio optimization problem was solved in this paper.

In this article, we deal with the concept of risk proposed in [4]. We analyze 
the risks of the financial positions in the one period case. It means that the value 
of the financial position under study in the end of the period turns into a random 
variable.

The function p : X  -»  К , where X  is the family of all attainable financial posi­
tions, is called risk measure if it satisfies the following properties for all financial 
positions X, Y:

1. Monotonicity:
IfX < Y ,  then p(X) > p(Y). (28)

2. Cash invariance:
If m e К , then p(X  + m) = p(X  ) -  m. (29)

The interpretation of monotonicity is clear: The increase of a financial posi­
tion’s payoff profile do not increase its risk. The cash invariance is motivated by 
the interpretation of p(X) as a capital requirement. If the amount m is added to 
the position and invested in a risk-free manner, the capital requirement is re­
duced by the same amount.

It is usually assumed that the portfolio diversification should not increase 
the risk. Convex risk measures has this property, the risk measure p  is called con­
vex risk measure if it satisfies the following convexity property for all financial 
positions X, Y-.

ρ(λΧ + ( ΐ - λ ) τ ) < λ ρ ( χ )  + ( ΐ - λ ) ρ ( Τ ) ,  , for all 0 < λ < 1. (30)

Moreover the convex risk measure p  is called coherent risk measure if it satisfies 
the following positive homogeneous property:

ρ(λχ)  < λ ρ ( χ ) ,  ; for all 0 < λ andX e X. (31)

Value at Risk (VaR) is an approach to the problem of measuring the risk of 
a financial position X based on specifying a quantile of the distribution of X un­
der the given probability measure. Value at Risk is the smallest amount of capital 
which, if added to X and invested in the risk-free asset, keeps the probability of 
a negative outcome below some fixed level.
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ForX  e X  and λ e (0,1) we define Value at Risk at level λ as:

VaRx (X) ■■= inf {m\ P[X + m < 0] < λ } . (32)

In the other words, VaR. (X) is (1 -  X)-quantile of the variable (--X). Clearly, 
VaR is a positively homogeneous risk measure. Generally, Value at Risk is not 
a convex risk measure. However, it is convex if it measures a risk of financial posi­
tions come from some particular classes. For instance, VaR is convex risk measure 
H'X consists of only normally distributed financial positions.

This risk measure has a clear interpretation and is recommended by numer­
ous financial institutions and presented in documents such as the Basel Accords. 
However, the absence of the convexity is a substantial objection. This disadvan­
tage of VaR led researchers to convex risk measures which have similar inter­
pretation as Value at Risk. It appears that, so called Expected Shortfall (ES), is 
a convex risk measure.

For A e X  and λ e (0,1) we define Expected Shortfall at level λ as:

ESX (X) := E\VaRa | α < λ] (33)

This convex risk measure is also called Conditional Value at Risk (CVaR), 
Average Value at Risk (AVaR), Tail Value at Risk (TVaR), Mean Excess Loss or 
Mean Shortfall. However, there are other risk measures defined in some papers 
under these names. In this article, the risk measure defined by (33) is called an 
Expected Shortfall. Clearly, ESfX) > VaRa, for any λ e (0,1).

In general case it is difficult or impossible to find an analytical form of 
ES. One can notice that there does not exist an analytical form of VaR for normally 
distributed financial positions. We estimate VaR using the Monte Carlo method. 
For every analyzed model, we simulate 1,000,000 observations. It is usually rec­
ommended to simulate 100,000 observations. However, we are mostly interested 
in extreme observations, namely those which are below VaR -\cvc\. In the formula
(33), one can see thatfilS  ̂is determined by a conditional distribution, in particu­
lar by the financial position’s distribution in the lower λ-tail.

6. The data and the estimation results

The database consists of prices of three stock market indices. Namely, the 
American DJIA, the German DAX and the Austrian ATX. In order to avoid intro­
ducing an artificial dependence due to the difference in closing times of stock 
exchanges around the globe, we work with Wednesday to Wednesday returns. 
Comparing to daily returns, weekly return processes have lower autocorrelation
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and avoid the missing data problem. This gives us a sample of 689 weekly returns 
from January 2000 to March 2013- We apply continuous (logarithmic) returns:

rf = 1 0 0 - l o g ^ - ,  (34)
P t - 1

where p t is the price index at the time t.
Firstly, we present some descriptive statistics in Table 2.

Table 2

Logarithmic rates of return time series summary statistics

ATX DAX DJIA

Mean 0.1036 0.0248 0.0335

Median 0.4157 0.3984 0.2140

Std. dev. 3.4646 3.4630 2.5782

Kurtosis 16.7931 5.1127 7.7125

Skewness -1 .9245 -0 .6643 -0 .9 4 6 4

In the period under study we observe an insignificant positive means in 
all the three indices. A relatively large absolute value of median suggest asym­
metries in the examined time series. Negative skewnesses confirm this con­
jecture. These asymmetries suggest that normal distribution should not be 
used to model these time series, and high kurtosis in all the three time series 
confirms that.

Table 3 presents empirical dependence measures for analyzed pairs of price 
indices.

Table 3
Empirical dependences between price indices’ time series

ATX/DAX ATX/DJIA DAX/DJIA

P 0,6439 0.6056 0,7863

Kendall’s τ 0.4135 0.3704 0.5848

λ , 0.6421 0.5072 0.5797

К 0.4638 0.3623 0.5652

e c o r r äi,ä; 0.7179 0.6441 0.6781

e c o r r k< ¿ 0.3798 0.5302 0.7183
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Here p  is Pearson’s correlation, Ql and Q? are a-quartiles of a realized vola­
tility series and a daily volume series, respectively. Tail dependencies XL and λυ are 
approximated by p [ t  <CT1 (0.l)|X < F~l (O.l)] and p \y  >G~l (0.9)|A > F~l (0 .9 )], 
respectively.

One can observe the strong and significant linear correlation between the 
indices under consideration. As expected, the strongest dependence is observed 
for the DAX/DJIA pair. Despite the many drawbacks of linear correlation, it is 
worth to mention that a portfolio construction is very sensitive to the degree of 
dependence.

Asymmetries in tails are observed for the ATX/DAX and ATX/DJIA pair. For the 
DAX/DJIA pair, the lower and the upper estimated tail dependence are at similar 
levels. The same result is observed for exceedence correlations.

A multidimensional GARCH(1,1) model with conditional mean described by 
the VAR(l) is supposed to eliminate the incorrect assessments of the foregoing 
model. Table 4 presents A matrices and constants μ from equation (21) for the 
three pairs of analysed time series:

Table 4
Vector autoregressive parameters

ATX DAX ATX DJIA DAX DJIA

ATX -0 .0 7 3 8 0.0855 ATX -0 .1274 0.2409 DAX -0 .0 9 3 7 0.0880

DAX -0 .0 6 4 0 -0 .0 0 0 9 DJIA -0 .0 0 0 6 -0 .0 7 5 4 DJIA -0 .0265 -0 .0 4 7 9

μ 0.1118 0.0235 μ 0.1117 0.0334 μ 0.0160 0.0333

Estimated parameters of GARCH(l.l) model, described by (24) and (26). 
are presented in Table 5:

Table 5
Multidimensional GARCH model parameters

(0 a ß
ATX 0.4952 0,2281 0,7467

DAX 1,2810 0,3028 0,6133

DCC 0,0363 0.9513
(0 a ß

ATX 0.5308 0.2278 0.7411

DJIA

DCC

0.5657 0.2451

0.0315

0.6830

0.9607
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Table 5 con t.

CO a ß
DAX 1.2065 0.2986 0.6239
DJIA 0.5601 0.2505 0.6802

DCC 0.0495 0.8987

Using methods described in section 3 we conducted the estimation of param­
eters of models for margins and regime-switching copulas. Table 6 contains the es­
timation results of AR(1)-GARCH(1.1) models along with Skeweed-i distributions.

Table 6

Estimation results of models for margins

parameter
< P o Ψ ι

CO a ß V λ

ATX 0.2868 -0 .0 2 6 7 0.4007 0.126 0.8315 -0 .2211 7.5306

DAX 0.2616 -0 .1 1 3 3 0.5833 0.1871 0.7703 -0 .3183 9.4504

DJIA 0.172 -0 .1 2 1 5 0.2738 0.1455 0.8127 -0 .2 3 3 2 7.7701

The estimated results confirm the stylized facts about log-returns: the 
skewness and the fat-tailedness. All of the estimated parameters are significant 
(5% level) with one exception (the AR(1) term in the ATX model).

We tested the correctness of the specification using the Ljung-Box and 
Engle tests applied to standardized residuals which are transformed to the 
uniform using the estimated Skewed-t distributions. Through goodness of fit 
tests along with the BDS test (Brock-Dechert-Scheinkman) we were able to check 
the uniform distribution of standardized residuals.

In the next step we estimated the regime switching copulas. To describe 
a dependence asymmetry we use two-parameter Archimedean copulas (BB1, 
BB4 and BB7) and Gaussian copula to model symmetric dependence with tail- 
independence patterns. In Table 7 we present the estimation results.

Table 7

Estimation results of regime switching copulas

p air o f indices first regim e copula θ<2) θ 2 P u P  2 2

ATX/DAX BB7 1.5723 1.5644 0.3430 0.9983 0.9978

DAX/DJIA BB1 0.6434 1.8649 0.4356 0.9916 0.9246

ATX/DJIA BB1 0.7751 1.3501 0.3561 0.9984 0.9983
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All of the estimated parameters are significant. The copulas that fit the best 
are chosen using AIC and BIC information criterions. The correctness of the cop­
ula specification are validated by an Anderson-Darling test applied to the first

dC dC
derivative of copulas: C (u\ v) = —  and C (y\и) = — .

du dv
In addition, based on estimated parameters of the transition matrix we com­

puted the mean time of return to regimes. In all cases this value is lower for the asym­
metric regime with a dependence in tails. For all pairs, the dependence between ex­
tremely low returns is stronger than between extremely high returns. The strength of 
dependence measured by weighted Kendall coefficients is the strongest for the DAX/ 
DJIA pair (with value 0.564) and the weakest for the ATX/DJIA pair (value 0.352).

The standard method of visualization of measure of risk under the assumed 
model is drawing of the efficient frontier line. An efficient frontier for a given 
measure of risk is the curve showing the minimal risk of portfolio which exhibit 
the calculated expected returns.

For all three indices’ pairs and the two risk measures, Figures 1-6 illustrate simi­
lar relationships.

Figure 1. Efficient frontiers of Value at Risk for ATX/DAX pair

0 5 10 15 20
1 switching copula — — GARCH ..........Markowitz

0 5 10 15 20
1 switching copula — — GARCH ..........Markowitz

Figure 2. Efficient frontiers of Expected Shortfall for ATX/DAX pair
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Figure 3. Efficient frontiers of Value at Risk for ATX/DJIA pair

Figure 4. Efficient frontiers of Expected Shortfall for ATX/DJIA pair

Figure 5. Efficient frontiers of Value at Risk for DAX/DJIA pair
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0 5 10 15 20

switching copula — — GARCH ........ »Markowitz

Figure 6. Efficient frontiers of Expected Shortfall for DAX/DJIA pair

Relatively small means of returns, presented in Table 2 cause a rapid increase of 
risk with increasing an expected portfolio return for the Markowitz model. Clearly, 
by definition, for every pair and every model ES is higher than VaR, see formula (33) ■ 
Since negative expected returns are not interesting from a practical point of view, the 
included figures outline only the risks for positive expected returns.

For low expected returns (lower than 0.2 for ATX/DAX and ATX/DJIA pairs and 
lower than 0.05 for DAX/DJIA pair), the mean-variance model underestimates risks 
and after reaching some level overestimates them. The similar relation is observed 
for the GARCH model applied for the DAX/DJIA pair, but for the higher level. For 
ATX/DAX and ATX/DJIA pairs, the multivariate GARCH model underestimates risks 
for almost every level.

The level of an expected return, for which the minimum of a risk is attained, 
is determined by the forecast’s multidimensional mean. At this particular time, 
means of all the three indices are the lowest for the Markowitz model, means of 
ATX/DAX and ATX/DJIA pairs are at similar levels for the switching copula model 
and the GARCH model.

With increasing of the expected return, VaR and ES increase with the similar 
speed for models based on a normal distribution. However, for all three pairs, ES 
increases essentially faster than VaR in the case of copula based model. A positive 
tail dependence in switching copula models and relatively fat tails of marginal dis­
tributions, such as a skewed t distribution, are reasons for this observation.

7. Conclusions

Recent contributions suggest non-normal distributions of multivariate asset’s 
returns. Evidences for an asymmetry in univariate distributions and in dependences 
have been found. Furthermore, the kurtosis of an univariate distribution and
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extreme dependences are found to be greater than under the assumption of nor­
mal distribution. In the three analysed pairs of assets, all of these anomalies have 
been detected. Any model in which the conditional distribution is assumed to be 
normal does not fit since statistical tests reject hypothesis of normal distributions.

For the three pairs under study a switching copula models fit well. This 
model includes asymmetries and fat tails for both margins and for dependences. 
Conducted statistical tests confirmed goodness of fit for the switching copula 
models. Comparing results of a risk calculation, for the GARCH model and the 
Markowitz model to the switching copula model, we observed discrepancies.

A mean-variance model does not assume a dynamic structure of series, the 
expected mean of the series is significantly different for a dynamic model. Thus, 
a multivariate GARCH and a switching copula models forecast the mean at the 
similar level, while the estimated mean, using Markowitz model, stands out.

Misspecifications may cause both, an underestimation and an overestimation 
of a risk. Slopes of efficient frontiers describe the speed of increase of a risk with 
increasing expected return. It is observed that slopes for models which neglect 
anomalies, such as asymmetries and fat tails, are biased. In particular, a change of 
slope with the increasing expected return is underestimated.

Evaluations differ particularly for the Expected Shortfall risk. A tail’s de­
pendences and fat tails are ignored in models based on a normal distribution. 
Expected Shortfall measures not only a frequency of a loss, but also its size. The 
supposition that observed anomalies of the multivariate distribution of an assets’ 
returns vector affects the size of an extreme return is confirmed.
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