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1. Introduction

Forecasting prices o f stocks or commodities on liquid markets is mainly 
guesswork. To reduce this insecurity about future price developments, we can 
try to use the information contained in historical data. This can be done, for 
example, by using parametric statistical models: it is assumed that the given data 
is the realization o f an underlying stochastic process with a certain specification, 
and historical data is used to calibrate the process parameters. The forecast is 
then the result o f an extrapolation step while eliminating the random element by 
taking the expectation.

Simple but powerful parametric models are autoregressive formulas where 
the current value is determined partly by the value o f the previous time step 
and partly by a random term. I f the model includes autoregression for the ran­
dom term as well, we speak o f an autoregressive moving average (ARMA) mod­
el. A more advanced concept is the autoregressive integrated moving average 
(ARIMA) model, which captures intertemporal dependence in the data itself as 
well as in the error term (cf. McNeil et al., 2006). Neither model, however, can 
capture seasonal effects — these have to be filtered or modeled by an extra com­
ponent.

Two well-known filter mechanisms are the Kalman filter and the Fourier 
transform (cf. Hamilton 1995). However, the quality o f  both methods suffers if 
the season has a variable period and/or intensity. Contrary to the previous meth­
ods, wavelet transform is able to capture these dynamics; this is why wavelet

* Both authors from University o f Erlangen-Nuremberg. University o f Erlangen-Nuremberg, Lange 
Gasse 20, 90403 Nuremberg.
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transform is interesting for time series analysis. By means o f this function, we can 
decompose the process into a linear combination o f different frequencies. We 
can — with some restrictions — quantify the influence o f a pattern with a certain 
frequency at a certain time on the price. Having such a feature, it is very promis­
ing that wavelet transform can help to improve the quality o f forecasting.

There is already a broad range o f work on this topic: A. Wong et al. (2003) 
use wavelets to fit a structural time series model to exchange rates. D. Donoho 
and I. Johnstone (1994), L. Breiman (1996), J. Bruzda (2013), H.Y Gao and 
A.G. Bruce (1997), R.M. Alrumaih and M.A. Al-Fawzan (2002) and G.E Nason 
(2008) use wavelets to eliminate random noise. A.J. Conejo et al. (2005), C.M. Lee 
and C.N. Ko (2011), Y  Chen et al. (2013) as well as K. Kriechbauer et al. (2014) 
decompose the time series into a sum o f processes with different frequencies and 
forecast the individual time series before adding up the results. M. Shafie-Khah 
et al. (2011) proceed in a similar way, but add a neural network component to 
their toolbox. Given such a variety o f approaches, it remains to be seen which 
model with which specification performs best in which scenario.

In order to conduct such an analysis we choose four time series, each with 
its own individual characteristics: oil prices, where the long-term structure domi­
nates, Euro-Dollar exchange rates and Deutsche Bank stock prices, where we 
see both long- and short-term patterns, and UK day-ahead power prices, which 
show a distinct daily oscillation. We perform day and week-ahead out-of-sample 
forecasts using models from the literature listed above. The results are com­
pressed by computing standard error measures like the root mean squared error. 
To validate each model’s performance, we generate two benchmarks: one using 
a simple ARIMA model (which does not model seasonality) and one using the 
Census X-12 ARIMA method. Census X-12 ARIMA was developed and is used by 
the U.S. Census Bureau to identify and model seasonal patterns and trends.

We come to the conclusion that the utilization o f wavelets improves the accu­
racy o f forecasting, especially for forecasting horizons larger than one-day-ahead. 
However, there is no single method that is best in all scenarios. The performance 
o f each wavelet-based method varies with the data set and the forecasting hori­
zon. Depending on the scenario, we recommend applying wavelets either for de- 
noising purposes or using the method o f A.J. Conejo et al. (2005). The concept 
o f H. Wong et al. (2003) is outperformed in all scenarios.

We structure this paper as follows: first relevant definitions o f time series 
analysis are given and the basic models are presented. In Section 3, we intro­
duce wavelet transform and explain how to use wavelet in time series forecast­
ing. In Section 4, we introduce the data sets and perform an empirical compari­
son o f the presented wavelet-based forecasting methods. Section 5 summarizes 
this paper.
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2. Some basics of time series analysis

In our analysis, we assume that the observed data is the realization o f an 
unknown stochastic process. A stochastic process is a family o f random variables 
(X t )te l ’ where / c f  is interpreted as time index. As we analyze discrete-time 
data sets, I  = Z . There are various parametric stochastic process models. Two 
widely used concepts, which are presented in the sequel, are the ARMA model 
and its extension, the ARIMA model. Eventually, we introduce another concept, 
the structural time series model (STSM) as well as widely used implementation, 
the Census X-12 ARIMA method. The STSM distinguishes between three com­
ponents o f a time series: a deterministic trend, a deterministic seasonality, and 
a stochastic noise term.

2.1. Autoregressive moving average models

The autoregressive moving average model o f order (p ,# )e N 2 is a linear 
time series model which describes a process (X t ) ^ ° f  the form

where φ e R V i e 1 e 1 . The μι e R is the long-term drift and by

tions for the innovations et are possible as well. The first sum represents the 
autoregressive (AR) part; i.e., the current value o f  X t is partly determined by its 
own past. The second sum is the moving average (MA) part, which introduces 
autoregression for et .

Important functions to characterize X t are its mean μ, = E (X t ). its variance 

function σ2 = E (X f -  μ/-)2and its autocorrelation function p (s ,i) = C ov (X s,X f ) /

•^σ2 ·σ 2 .where s ^ t  and s,t e Z. Having obtained a set o f observations ( T j .....T j · )

we can calculate these functions for every time step (which is quite cumbersome 
for large data sets, though). One way to reduce this effort is to demand the process 
to be stationary Stationarity describes a certain invariance o f the shap>e o f a process. 
We speak o f strict stationarity if the conjoint distribution o f a subset (X t ) teW ,W cz I  
is invariant under time shifts. A  process is called weakly (or wide-sense) stationary if 
its mean and variance function are constant over time, and if the covariance is only 
a function o f the distance (s — i). Wc focus on this kind o f stationarity, and will omit 
the adjective ’’weak” in the following. If a stochastic process shows this feature, the

( 1 )

default et ~ ΛΜΟ,σ2 Ι,σ > 0 (cf. McNeil et al., 2006). Other distribution assump-
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number o f parameters that have to be computed is significantly reduced. An even 
more important consequence o f stationarity is the following: if an ARMA process 
with Gaussian innovations is stationary, then it is ergodic regarding mean and vari­
ance (cf. Green 2008). Ergodicity means that we can estimate the process parameters 
consistently using time-series data. If ergodicity is not given (e.g. due to trends or 
seasonality), the process parameter estimates are biased. Time series forecasts based 
on the estimated parameters would then be biased as well.

In the case o f the ARMA model, stationarity is relatively easy to verily (cf. McNeil 
et al. 2005): the moving average part o f Eq. (1) is weakly stationary by definition, 
and the autoregressive part is weakly stationary if |̂r| > 1 for all z  e C that fulfill

1 -φ 1ζ - . . .  -  φρζ ρ = 0. (2)

The optimal forecast for the model in Eq. (1) is obtained by minimizing the 
forecasting error regarding a chosen goodness o f fit measure. I f  we opt for the 
mean square error, it can be shown that the optimal h-step forecast (h e N) X t+b 
is the expected value o f Eq. (1) given the filtration until time t , which is denoted 
by Tt (cf. Hamilton 1995):

x t+h = E μ + ΧΦ ϊ (xT+h-p -  μ) +
i=1

Y j® j£T+h-j IΆ  ■
j =0

(3)

As the conditional expectation is a linear function, Eq. (3) can be simplified. 
Because we assume that the innovations have zero mean, we obtain

E
i f  0,

otherwise.

~ X T + j

0

i f j ^ O ,

otherwise.

(4)

The h-step forecast for an ARMA(1,1) model, for example, reads as follows:

Xf+ъ = Ąxt+b\rt ] = μ + Фй (xt -  μ )+ Φh~^£f  (5)

Fitting a process X t e 7L o f the form o f Eq. (1) to a data set means estimat­
ing the lag order, the coefficients, and the parameters o f T . For determining the 
lag order (p ,^ ) we test various lag order combinations and choose the best one 
using information criteria that punish a higher number o f variables. An example 
for such a criterion is the Bayesian information criterion, but there are others as 
well. For an overview, refer to S.G. Koreisha and T.A. Pukkila (1995).
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The further parameters o f Eq. (1), including those o f F, can be estimated us­
ing Durbin’s (I960) regression method, the conditional or unconditional least 
squares method, or by maximizing the likelihood function. As this is a nonlinear 
optimization problem, numerical methods like the Berndt-Hall-Hall-Hausmann 
algorithm or the Newton-Raphson algorithm come to be applied (cf. McNeil et al. 
2005 or Hamilton 1995).

2.2. Autoregressive integrated moving average models

we mainly distinguish between instationarity in the mean and instationarity 
in the variance. For forecasting it is crucial to avoid the first one. Instationarity 
in the mean is caused, for example, by linear trends which can be eliminated by 
modeling AXt = X t -  X t-\ instead o f X t. This procedure can be repeated to treat 
trends o f higher polynomial order, and we speak o f an autoregressive integrat­

ed moving average process with integration order d  e N, if Δ X t is stationary 

Thereby Ad = A? -  Δ ^ )1 , á e N \ { l } .
The optimal h-step forecast ( b e  Ы) for an ARIMA(p,d,q) model is com­

puted in two steps: first, we compute expectations according to Eq. (3) and 

(4) for Yt = Ad X t and obtain an estimate for Yt+h· Second, we use the rela­

tion = ( l  -  B )d X t+h with B d X t+h = X t+¡}_ (f , d  e N. to obtain a forecast for 

Xf+h (cf· McNeil et al. 2005).
To estimate the integration order d  , we use tests on instationarity, e.g. the 

augmented Dickey Fuller (ADF) test (cf. Dickey, Fuller 1979) or the Phillips-Peron 
(PP) test (cf. Phillips, Peron 1988). I f  we find instationarity in X t . we proceed as 
follows: we compute the first differences and perform the unit root test. I f  the 
test still indicates instationarity, we compute the second differences and apply 
the test again. We continue with this procedure until we find a difference Ad X t 
which is stationary.

The ARIMA model is able to capture trends, and there are also extensions to 
include seasonality and long-term dependence. For these versions please refer to 
(Granger, Joyeux 1980), (Hosking 1981).

2.3. The structural time series model

The structural time series model consists o f three major components. A pro­
cess X t e Z  at time t is described as a sum o f a long-term trend Tt . a seasonal 
component St , and a random (noise) term et (cf. Majani 1987):

X t =Tt +St +et,  (6)
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By means o f the exponential function, we can transform the additive model 
from Eq. (6) into a multiplicative one. Trend and season are expected to be deter­
ministic, but we can also design them to be stochastic (cf. Harvey, 1989).

The exact shape o f Tt and St depends on how both components are es­
timated. Common methods o f identifying Tt are the moving average method, 
the Fourier transform, the Kalman filter or exponential smoothing. A more so­
phisticated version would be to see Tt as a function / (ί;β 1,...,βη ) with param­
eters β^.,.,β^ € В , where B e l  denotes their domain. Examples for f  are

f ( t)  = $ l f l ( t)  + ~+$nfn{t)  + et or f { * )  = A { tf 1 + - +fn {tf "  + ut- where ut
is a noise term and are functions o f t . The parameters can be esti­
mated applying the least squares method, i.e. by solving

where t  = Ι ,.,.,Τ  € N is the index o f our observations. In more complex sce­
narios we can use numerical methods like the Gauss—Newton algorithm. The 
seasonal component St is commonly estimated using the Fourier transform 
or dummy variables (cf. Harvey, 1989)· However, both methods require a true 
seasonal pattern with fixed period and intensity to provide sound estimation 
results. For et various stochastic processes (e.g. an ABIMA model) can be as­
sumed. For producing forecasts, both Tt and St are extrapolated and the fore­
cast o f et is evaluated.

An implementation o f the STSM is the Census X-12 ARIMA method devel­
oped by the U.S. Census Bureau. It defines season as constantly repeating intra­
year variation and patterns with a longer period as trend. A further component 
for daily features can be added. Seasonal and trend adjustment is done by ap­
plying different moving averages iteratively What is left is then modeled by an 
ARIMA process (cf. Findley et al. 1998).

3. Wavelet-based forecasting

As suggested in the introduction, wavelets may be used to extend the meth­
ods from Section 2 in order to improve forecasting accuracy Before presenting 
three possible extensions, we give a few basic definitions o f wavelet theory.

3-1. A brief introduction to wavelet theory

A wavelet is a complex-valued function Ψ ( i )  e Ô  ( - j^ C 2 ( - ) that fulfills the 
admissibility condition

(7)
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a
'ΐ '(ω )

Ψ ω
< со,

(8)

where the hat denotes the Fourier transform. Each Ψ has a fixed mean and fre­
quency To make it more flexible, set ^ a,b = Ψ ((/ - b )  / я ) , which translates Ψ by 
ί ι ε ί  and scales Ψ by a scaling factor a > 0 that is inverse proportional to the 
frequency (cf. Mallat 2003).

The continuous wavelet transform (CWT) generalizes the Fourier trans­
form and is, unlike the latter, able to detect seasonal oscillations with time-vary­
ing intensity and frequency While stationarity o f the process is not required, 
square-integrability is needed (see Mallat 2003). In the following, we focus on 
the CWT. For an introduction to the discrete wavelet transform please refer to 
G.A. Kaiser (1994) or A. Jensen and A. Cour-Harbo (2001). The CWT is the or­
thogonal projection o f a process (X t ) fejj on Ψβ i.e.

WTX (a ,b ) = X , 4 a>b = \xt - ± = 4 ajb ( t )d t ,
1D> Vß

(9)

where the overline denotes the conjugate complex (cf. Mallat, 2003). The 
Μ/'/ γ  (a,b ) indicates how much o f X t is explained by a local oscillation Ψ at 
scale a in time b . The inverse transform is therefore a linear combination o f Ψ 
and in the continuous case a double integral o f the form (cf. Mallat 2003)

x ( t ) ± - ] ] w T ( a , b ) ^ .
^  0 -,0—со ■Ja

Ψ
f t - b л
\ a  J

dbda. ( 10 )

We can simplify Eq. (10) significantly for a discrete data set, e.g. for daily 
commodity prices. In this case Shannon‘s sampling theorem states that the signal 
can be exactly reconstructed using only a discrete set o f scales; i.e., the above 
integration is reduced to a sum (cf. Shannon 1949).

When identifying the influence o f patterns with a certain scale or frequency 
(e.g. annual seasonality), we have to consider the uncertainty principle o f time- 
frequency analysis. It says that both scale and location o f a signal cannot be exact­
ly specified simultaneously (cf. Lau, Weng 1995). Thus, we are limited to an analy­
sis o f time-frequency windows and the only lever we can pull is the choice o f an 
appropriate wavelet. For various selection criteria, please refer to N. Ahuja et al. 
(2005). The best wavelet regarding window size is the Morlet wavelet, which is 
a function 4 M (ί| σ,ω0 ) : К —> C with
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where

Г *  ( « Μ » ) - ν ' “ ' · ' *  ( * ' ν  -  <г1,2” ; ) ’

2 — ω.i  ω. 0 41 - е 0 - 2 # 4

-1/2

(ii)

(12)

and 0)0 > 0 denotes the basis frequency and σ > 0 (cf. Daubechies 1992). It is plot­
ted in Figure 1 at three different scales for b = 0 and its time-frequency window 
can be found in Appendix A. In Figure 1, we can clearly see the influence o f the 
scale parameter and the character o f a local oscillation. It is diminishing outside 

a set called cone o f influence (Col) that reads as -  (sM -  s¡}a ,b + (su — S / )«] · 
where [s/,s„] ç R  is the support o f Ψ (cf. Lau, Weng 1995). I f  data within the 
Col is missing for time t and scale a > 0 , the coefficient WTx â ¿ j from Eq. (9) 
is biased, which especially holds for the edge regions o f a finite data set. Methods 
to reduce this effect are given by S.D. Meyers et al. (1993). A. Jensen and A. Cour- 
Harbo (2001), or C. Torrence and G.E Compo (1998).

Figure 1. The Real Part of the Morlet Wavelet at Different Scales

In this paper, we analyze daily data X t ,t = 1.....T . Hence, we set dt = 1 and
b e Z . The scale grid has to be discretized as well. Most authors (e.g. Torrence,
Compo 1998) use a dyadic approach to form a set o f scales A = .....aj }  ·
We construct A likewise :
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= 21+jSj ,7 = 0 ,1...../, and J  = bj Xlog2
Í  j \

\ u o J
+ 1 , (13)

where bj e M+ determines the resolution o f wavelet transform. The grid is finer 
for lower scales. This is reasonable as information is more concentrated in the 
lower scales than in the higher (i.e. lower frequencies). It is likely, for example, 
that a process has a weekly and a monthly oscillation, but less likely to find an an­
nual oscillation together with an oscillation having a period o f a year and 20 days. 
As a consequence, we can aggregate the influence o f larger scales without losing 
relevant information. For this purpose we introduce the wavelet scaling function 
φ that behaves like a low-pass filter and aggregates the influence o f all scales 
larger than a >0  on X t (cf. Mallat 2003). There is a huge variety o f scaling 
functions we can use (cf. Ahuja et al. 2005) but when operating together with 
a wavelet Ψ it has to fulfill at least

9 00
|φ(ω)| =J

ω

|íft)|2
ξ

d%. (14)

Just asT, each scaling function has a certain frequency and is centered 
around a certain . t e l .  Thus, we define a rescaled and shifted version o f φ by

§а,ь(*) = - ! = § { — - ) ,a > 0 ,b e Z .  (15)
V «  V a  J

Eventually, we are able to split up a process X t e Z  for a scale a e A  as 
follows (cf. Mallat, 2003):

Σ  {X ^ a , b Y a , b { j )\  V í · ( 16>
Ί* ЬеЪ Ψ ЬеЪ а е А л а > а  а

The first addend represents the long-term trend and the second addend 
contains short-term information o f X t . In Eq. (16) we can see that the effort 
is reduced because for scales larger than a , the double sum is substituted by 
a simple sum. However, the CWT is still computationally very intensive. One 
way to reduce the effort is to use the á trous algorithm o f M. Holschneider et al. 
(1989) for decomposition purposes. The main idea o f this algorithm is that the 
wavelet o f a certain scale a j e A  is not computed exactly, but interpolated using 
the wavelets o f scale « y -ι· The result is a cascade o f filter banks. In Appendix B, 
we present the algorithm in detail.
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3.2. Wavelet-Based Forecasting Methods

Essentially, there are three different wavelet-based forecasting methods. One 
is to use wavelets for eliminating noise in the data, and one uses wavelets to esti­
mate the components in a STSM. Another method performs the forecasting based 
on the wavelet generated time series decomposition. In the following we briefly 
describe each o f these methods.

3-2.1. Wavelet Denoising

Wavelet denoising is based on the assumption that a data set ( A  ¡  ,X T ) is the

sum o f a deterministic function Yt and a white noise component et ~  Λ^Ο,σ" j,

i.e., X t =Yt +et . By means o f wavelets, the noise is reduced and the standard 
forecasting methods from Section 2.1 can be applied to the modified data set (cf. 
Alrumaih, Al-Fawzan 2002).

The denoising is accomplished as follows: initially, the CWT is applied to X T 
with a scale discretization o f A = {я 0.....a„J and b = 1,..,T with n e N. The result

is a matrix o f wavelet coefficients The CWT for a pair o f parameters ( a,b )
is an orthogonal projection o f X t on the wavelet Y  a Thus, each W T(a ,b )  in­
dicates how much o f X t is described by Y a !x G.E Nason (2008) shows that the 
noise term has an impact on each coefficient, while the information o f Yt is con­
centrated only in a few So, if WT ( a,b ) is relatively large, it contains information 
about both Yt and et , whereas small coefficients indicate a motion solely caused 
by the noise term. If we now set all coefficients below an appropriate threshold 
λ > 0 to zero and invert the modified coefficients WT'(a ,b}, we obtain a noise 
adjusted time series X 'T .

The question o f how to choose λ  remains. D. Donoho and I. Johnstone 
(1994) propose two different thresholds:

(я ) W T '(a,b} = WT(a,b}\¡^WT â (hardthreshold}

(b} WT' (a,b} = sgn(W T (a,b^}(^WT (a,b} | — ¿,)|>λ ! ( soß  threshold}

where sgn denotes the signum function. The larger the λ, the more noise; but at 
the same time, more o f Yt is cut out and vice versa. D. Donoho and I. Johnstone 
( 1994)  suggest *Tuniversal = σ^/2logT  for λ, where σ is an estimator for the 
standard deviation σ o f the wavelet coefficients at resolution level я0. Using 
λ universal >n the hard threshold function is called VisuShrink. This procedure is 
quite smoothing, as it cuts o ff a relatively large number o f coefficients.
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D. Donoho and I. Johnstone (1995) propose a further threshold based on 
the SURE1 estimation method developed by C.M. Stein (1981). For a scale a , they 
derive the optimal threshold λsure by solving

Ί-suiu: = arg min SU R EÍW T.l) (17)

T  2
Sí/R£(lFT,X) = r -# {í:| W T (a ,í)| < X } + £min(|wT(a,f)|,X) · (18)

f=l
This method does not work very well for sparsely occupied matrices. 

Therefore D. Donoho and I. Johnstone (1994) unite both concepts in the 
SureShrink method, which uses λ as threshold if

Y ( w T ( a , t f  - l ) <  log2 Γ 3/2 ( 19 )
t '

for a e A  and /-Surh otherwise. H.Y Gao and A.G. Bruce (1997) or L. Breiman 
( 1996)  propose further threshold rules.

3-2.2. Wavelet-based estimation o f a structural time series model

In Eq. (16), we break up a process (X t ) /e% into a long-term component and 
a short-term part by means o f a scaling function and a wavelet. H. Wong et al. (2003) 
make use o f this fact to estimate the components o f the STSM from Section 2.3, 
which models X t as the sum o f the trend Tt . the season St and the noise et . i.e.

X t =Tt +St +et , t e Z ,  (20)

First, they estimate trend and seasonality Tt ,St from the data. Second, 
they produce forecasts for Tt and St by extrapolation polynomials fitted to Tt 
and St . To 6t = X t —Tt - S t they fit an ARMA(1,0) model and generate a forecast 
as well.

The Tt is computed by aggregating the high-scale patterns using a scaling 
function ф as described in Section 3.1. which is for discrete-time data a linear 
combination o f the observations, as the convolution integral is approximated by 
a sum:

(21)
beZ

1 Stein’s Unbiased Risk Estimate (SURE) is an unbiased estimator o f the mean squared error.
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It remains to choose a scaling function and the optimal scale a \ which de­
pends on the analyzed data set. This scale should be small enough to capture the 
whole trend, but large enough not to cut through some short-term oscillations.

For estimating X T , H. Wong et al. (2003) use the hidden periodicity analy­
sis, which is described in Appendix C.

3-2.3- Forecasting based on a wavelet decomposition

We can motivate this procedure using the commodity market as an example: 
prices are determined by different traders, each with their individual intentions 
and investment horizons. People might trade because they need the commod­
ity for production purposes, while trading is pure speculation for others. Using 
wavelets we intend to “unbundle” the influence o f traders with different invest­
ment horizons, i.e., split the price process into a sum o f processes with different 
frequencies. The underlying assumption is that we can model and forecast these 
individual patterns more precisely.

Further, there are technical arguments in favor o f this method. Among others, 
S. Soltani et al. (2000) show that we can avoid (existing) long-term memory by mod­
eling the multivariate process o f wavelet coefficients instead o f the process itself. 
They also show that there is no long-term dependence between different scales. 
E Abry et al. (1995) come to a similar result for fractional Brownian motions.

The procedure is as follows : The time series {X t | ^ is transformedaccord-

ingtoEq. (9) to obtain a matrix o f wavelet coefficients W T (a ,b ) ,a  e A,b = 1, T. 
where A  denotes a scale discretization. For each a , the corresponding vector
W T (a )  = l F j ( e . l ) ..... W T ( a. '/') is treated as a time series. Standard forecasting
techniques like those from Section \ref{btsa} are applied to obtain forecasted 
wavelet coefficients, which are then added to WT in order to obtain an extended 
matrix WT ’ (cf. Conejo et al. 2005, or Yousefi et al. 2005). O. Renaud et al. 
(2005) use only specific coefficients for this forecast, which is very efficient but in­
creases the forecasting errors. The extended matrix WT ' is then inverted accord­
ing to Eq. (16), and we finally obtain a forecast X t+\ for X t in the time space.

4. An empirical comparison
of different forecasting methods

The wavelet-based forecasting techniques from Section 3 are applied to four 
data sets in order to evaluate their performance. To check whether the additional 
effort is worthwhile, we do also compute forecasts using the classic methods 
from Section 2. Below, we present the chosen time series, and then describe the 
test design and comment on the estimation results.
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4.1. The data sets

We analyze four different time series which are displayed in Figure 2: the 
Deutsche Bank (DB) stock price, the Euro-Dollar exchange rate, the West Texas 
Intermediate (WTI) oil price, and the APX Power UK Peak Load Index (provided 
by the APX Group), i.e., the average UK day-ahead power price. Eachofthese time 
series has its own individual characteristics. The WTI, which represents commod­
ities in our study, has a comparatively strong long-term pattern which dominates 
the short-term oscillation. The DB stock prices show a long-term trend as well, 
but also some medium-term oscillations and a few price jumps. The EUR/USD 
exchange rate, which represents the foreign exchange market, has a visible long­
term component, a less important short-term structure and shows some distinct 
price jumps. The UK power prices represent the recently evolving electricity 
markets. They show only a minor upward trend, but a strong daily oscillation.

For the first three time series, we have weekday closing prices whereas the 
UK power prices include weekends. Initially, we apply both the ADF and the PP 
test to our data sets as well as to the first differences to identify the integration 
order. The alternative hypothesis for both tests is stationarity. The correspond­
ing p-values for the time series and their first differences, which are displayed 
in Table 1, are constructed from the tables in Banerjee et al. 1993· The ADF test 
indicates an integration order (d ) o f one for all time series. The PP test shows 
similar results, except for the UK where the test is indifferent between d  =  1 and 
d  = 0. This coincides with Figure 2 as the power prices’ long-term pattern (i.e. its 
trend) is comparably weak. In Table 1 we also give the empirical standard devia­
tion σ  , which is computed from the empirical error o f  an ARIMA(1,1,1) model.

This parameter has a positive influence on forecast volatility. The larger the σ  . 
the larger the probability that the real value will deviate from the forecasted one. In 
Table 1 we observe that the power prices’ standard deviation is substantially higher 
than the standard deviation o f the other time series. The EUR/USD exchange rate 
has the lowest standard deviation; i.e., the weakest oscillation. Therefore we expect 
that the forecasts o f the exchange rate are better than those o f the power prices.

4.2. Test design and goodness o f fit measures

We compute day-ahead and week-ahead forecasts, which is a step o f seven 
days for the power prices and a step o f five days for the other three data sets (as 
these exclude weekends). Out-of-sample forecasts for the last n data points o f 
each time series are calculated, where n is 14 for the power prices and 10 for the 
rest. The results are evaluated using three different error measures, namely the
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mean absolute deviation (MAD), the root mean squared error (RMSE), and the 
mean average percentage error (MAPE). These measures are defined as follows:

T
M 4 £ > (x ,x ) = Σ  \Х г ~ Ц / ^

i= T -n + l

T  . „ 42
r m s e ( x ,x ) = Σ  \x i - x i )  /n' (22)

i= T -n + 1
T

MAPE [x ,  x )  = Σ  \x i - x i\/(x in),
i= T -n + l

for data X t ,t = Ι,. , . ,Τ  and estimates X t ,t = 1,.··,T. The MSE penalizes large de-
viations more than the MAD. The MAPE focuses on the relative deviation, i.e. 
it allows larger deviations if X t itself is large at time t. ETsing these different 
measures allows us to evaluate forecasting method performance from different 
points o f view.

The first forecasts we compute are based on an ARIMA(p,l,q)-modeL We use 
ARIMA instead o f ARMA, showing in Table 1 (Appendix) that each time series is in­
tegrated o f order 1. The pair ( p ,q )  ε N 2 is identified as described in Section 2.1. 
Moreover, we apply the Census X-12 method o f the U.S. Census Bureau (briefly 
X-12) as an implementation o f the STSM from Section 2.3·

Deutsche Bank EÜR/USD Exchange Rate

WTI O il P rice APX Power ÜK In d u s tr ia l Peak Load Index

Figure 2. The Analyzed Data Sets

120



Wavelet-based forecasting o f ARIMA time series -  an empirical comparison...

To implement the wavelet-based methods, we choose three widely used func­
tions: the Haar wavelet (see Appendix D), which is the simplest wavelet and or­
thogonal to a scale-dependent moving average (cf. Stollnitz et al. 2005), the Morlet 
wavelet, which has the best time-frequency resolution, and the (orthogonal) 
Daubechies D4 wavelet (see Appendix D), which is easy to implement and works 
well with efficient techniques like the à trous algorithm (cf. Daubechies 1992). We 
follow C. Torrence & G.E Compo (1998) when constructing a scale grid according 
to Eq. (13) and set a0 =2,5; = 0.6 in case o f the Morlet wavelet and a0 = 2,5/ = 1 
in case o f Haar’s function. We apply the Haar wavelet with all wavelet-based meth­
ods, and further evaluate whether it pays o ff to use more complex wavelet func­
tions. Morlet’s wavelet, for example, is chosen for performing a multiscale forecast 
as described in Section 3-2.3· For the denoising procedure, we follow D. Donoho 
and I. Johnstone (1994) and apply the Daubechies D4 wavelet.

Eventually, we apply the concept o f Wong et al. (2003) and generate fore­
casts with a wavelet-based STSM (see Section 3-2.2). For this purpose, only the 
Haar wavelet is chosen.

4.3· Presentation and Evaluation of the Estimation Results

The forecasting results differ from time series to time series. We find that the 
perfomiance o f each wavelet-based method varies with the data set and the forecast­
ing horizon, and there is no single forecasting method which would be applicable 
to all time series (see Table 2, Appendix). In the following we briefly summarize 
the results o f our study for each time series before drawing an overall conclusion. 
Tables containing the exact results o f all error measures can be found in Appendix E.

The Deutsche Bank stock price. Looking at the day-ahead forecast, the 
Haar-based multiscale method combined with the ARIMA model performs best 
regarding all three error measures, although its APE is as low  as the APE o f the 
classic ARIMA model. Moreover, both MAD and RMSE o f the classic ARIMA model 
are less than 196 worse than those o f the Haar-based multiscale method. The clas­
sic Census X-12 method proves to be inadequate in this scenario, as all wavelet- 
based methods show lower values for MAD, RMSE and APE.

In case o f the week-ahead forecast, the difference between classic and wave­
let-based methods is stronger. The Morlet wavelet-based multiscale decomposi­
tion with Census X-12 forecasting turns out to be the best method. Its MAD is 
4.596 lower, its RMSE is 1096 lower, and its APE is 996 lower than the best classic 
forecasting method, which is the ARIMA model.

The Euro/Dollar exchange rate. In the day-ahead forecast the Haar wave­
let-based multiscale method and the ARIMA model performs best. They make it 
possible to reduce the forecasting error by about 4—796 (depending on the error
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measure) compared to the classic АШМА model, which still produces better fore­
casts than the Census X-12 method. In the week-ahead scenario the results are 
different. Now Haar or Daubechiet D4 wavelet-based denoising in combination 
with the ABIMA model allows us to reduce the errors significantly (by 12—22%) 
compared to the АШМА model, which is again the best among the classic methods.

The WTI oil price. The Haar/Daubechies D4 wavelet-based denoising meth­
od in combination with the АШМА model performs best regarding all three error 
measures in the day-ahead forecast. MAD and EMSE o f the best classic forecasting 
method (АШМА) can be lowered by 896 and the APE even by 25%. In the week- 
ahead forecast the Morlet multiscale decomposition combined with the Census 
X-12 method generates the best forecasts regarding MAD and APE. The EMSE fa­
vors the same decomposition method except for the АШМА model. I f  we use the 
Census X-12 method on the decomposed time series instead o f an АШМА model, 
we are able to reduce MAD, RMSE, and APE by 13% (MAD) —25% (APE).

The UK pow er prices. The best day-ahead forecast regarding MAD and RMSE 
is generated by a Morlet wavelet-based multiscale decomposition combined with 
the Census X-12 method. The APE favors the simple АШМА model. However, the 
difference between both methods regarding MAD and RMSE is less than 3%· So, 
for the one-day-ahead forecast, the classic ARIMA model provides sound results. 
This also holds true for the week-ahead forecasts, where only the MAD can be 
lowered by less than 1% when using the Haar/Daubechies D4 wavelet-based de­
noising plus the Census X-12 method instead.

The estimation results above indicate that there is not one single “outstand­
ing” wavelet-based method. Sometimes denoising is preferred, and sometimes 
the multiscale forecasting method provides sound results. Even the optimal 
wavelet varies with the data set and the forecasting horizon. Denoising, where 
switching from Haar’s to Morlet’s wavelet has a minimal effect on forecasting er­
rors, stands out as an exception.

What we find is that it generally pays o ff to use wavelet-based forecasting 
methods. The UK power prices are an exception, though. There, the classic 
АШМА model is sufficient, which is reasonable as this time series consists mainly 
o f a dominating short-term oscillation. Wavelet transform is applied because we 
want to make use o f certain structures within the data set. I f there is no signifi­
cant structure, the payoff is small. We can see the opposite in the results o f the 
WTI oil prices and the exchange rate, both having a significant medium- and 
long-term structure. Using wavelet-based methods leads to a considerable reduc­
tion o f computed errors.

Wavelet-based methods are more powerful for longer forecasting horizons, as 
our results indicate (excluding the power price scenario). The errors o f the week- 
ahead forecasts are reduced to a higher extent than in the day-ahead scenario.
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To explain this fact, we use the same argument as above. Wavelets are applied to 
make use o f certain structures in the time series. Identifying these structures is 
more important for longer time horizons than for short ones. In the day-ahead 
scenario, autoregression is able to capture a large part o f these structures; in the 
week-ahead forecast it is not sufficient.

Another observation is that wavelet-based methods are superior to the clas­
sic Census X-12 model, which is shown for all data sets. Nevertheless, the X-12 
method is still useful. However, looking at the results o f this study indicate that 
it makes sense to integrate the X-12 method into a wavelet-based procedure. The 
wavelet-based STSM proposed by H. Wong et al. (2003) is outperformed in all 
tested data sets. Thus, from our results we cannot recommend using it.

5. Conclusion

The purpose o f this paper is to evaluate the power o f wavelet-based forecast­
ing methods. Wavelets are used mainly in the context o f data preprocessing. The 
actual forecast is done using one o f the existing forecasting techniques, o f  which 
we presented the ARMA/AJRIMA model and the Census X-12 method. We also gave 
a brief introduction to wavelet theory and then described how wavelets are used 
for forecasting purposes. For our empirical study, we chose four time series with 
different characteristics. Two different forecasting horizons (one day, one week) 
are tested, and the results are compared using three standard error measures.

Evaluating the results we come to the conclusion that using wavelet-based 
forecasting methods pays off, as long as there is some structure in the data. If 
a time series consists to a large part o f short-term oscillation, the gain o f using 
wavelets is small or even negative. However, for data with existing medium- and 
long-term structure we were able to reduce the errors o f the day-ahead forecasts 
substantially and further reduce the errors o f the week-ahead forecast. One has 
to note, though, that there is nothing like a general method applicable to all sce­
narios, as performances vary with the data and time horizon.
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Appendix

A. The time-scale window of morlet’s wavelet

For « ,σ ,ω 0 >0  and R the time-scale window o f ΨΜ(ί | σ,ω0) is (cf. Fabert 
2004)

2-/2πα 2\[2πσ
a ------------- ,a ----- p ------ .

ω0ν2 σ  + 1 03ον 2 σ - 1
i (a ,b ) =

, « σ  , ασ  
b - - j = , b + - ¡ =  

V2 V2.

B. The à trous algorithm

Let

|ф»г,геО = ф (·/2” * -n j/ y f? "  -,т,п,е z |

denote a set o f scaling functions to a dyadic scale discretization. The correspond­
ing set o f wavelet functions reads as

[ v m,„ (·) = Ψ (· / 2m -  n) / y¡2T  : m ,/z,e ZJ.

I f ф is chosen such that it generates for each scale an orthonormal basis, 
then according to (Mallat 2003) there is a vector (hn ) neZ with
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φ(ί) = >/2 £ £ „ ф (2 * -я ) .
ne Z

The (hn\ 7/ is called scaling filter. S.A. Mallat (2003) also shows that for the 
corresponding wavelet there is a vector ( g ) neZ with g n = ( - 1 )  such that

ψ ( ή  = ^ 2 Σ §ηΨ ( 2 ί - η ) .
n eZ

Let now (X/ )  ^ be a discrete-time process and define d™ = { x , x¥ m n ĵ, 

g T = (^>Фт,/г) Define

= \d™ : и e z )  e £2 (Z) and cm = Jc”  : и e z j  e (Z ).

We introduce recursive (filter) functions hr , g r , whereby r e N  indicates 
the approximation level (the higher r  the coarser the approximation). Set 
g °  = h, h® = g  . In every filter step we want to obtain a coarser approximation o f 
the time series. Therefore, the filters g ' , hr are computed by introducing zeros

between each component o f g r~^. hr 1 . Two operators Gr ,H r are defined as 
follows

G r -.0 (Z ) Ô  (Z)withch->\{Grc\ = X g k -n ck
G  ”  k e Z

H r :£2 (Z ) £2 (Z )w i t h e r  i [ н гс\ = Σ % - η°Μ
G  ”  k e Z

The adjoint functions G 1* , H '*  are defined analogously to invert this mapping. 
Giventhese definitions the à trous decompositionalgorithm is performedas follows : As 
input we require c° = je*’ : n e Z j anda M  e N lo determine the maximal scale 2'W .

We then gradually compute for m = 1.....M  : d m = Gm ^cm 1. cm = H m l cm 1 and
yield cM ,d m,m = 1 .....M . i.e. a multiscale decomposition o f the time se­
ries with cM containing the information about the highest scale (that is the 

long-term component). For the reconstruction o f the time series we start with 
M , cM , d m. m = 1 M  and gradually compute

Vm = M , M - l .....l : c  = H  c + G  d .

The result is c° from which we obtain the time series by inverting the cor­
responding convolution.
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C. Hidden periodicity analysis

Here, just the algorithm is given. For a more detailed overview, see (Li, Xie 
1997) or (Wong et al. 2003). Let ( X t ) T be a time series with an estimated 
trend T . Let Yt = X t -  T  and assume

T

Yt = + ξί ·  _ π < λ ι < · . . < λ „  <π,η  e N,
п = 1

with a complex random variable a „ ,n  = 1,...,N . which has finite variance, no au­

tocorrelation and for which holds 0 < a  <|| a n ||2,a e C. The random variable qt is
CO CO

a linear combination o f ergodic processes r\t : \t = Σβ/Οζ-ζ with Σ -ч/У |ß z| < °° ·
i=1 j =1

Having T  observations for vt . H. Wong et al. (2003) identify “hidden periodici­
ties”, i.e. regular patterns contained in the time series, using a wavelet function 
whose Fourier transform has finite support and integrates to a nonnegative but fi­
nite constant. The idea is to compute the wavelet coefficients o f the periodogram 

2
Μ λ )  = У ".!)61 l t \ /2πΤ for λ e [-π,π]. Then, large coefficients for a specific

scale indicate a hidden periodicity H. Wong et al. (2003) use a dyadic wavelet

decomposition scheme similar to Eq. (13), i.e. the set o f scales is A  =  |2m ,m e zj. 
Their algorithm to identify hidden periodicities is as follows. Set n = 1:

1) Let ill = <0,1 2lml - l j .  Compute jllT/ (m,bm) : m = m0,m0 -1 .... -х,йт  e M  j
for a Z .

2) Let fejzw) = argmax (wTj M W (m }  = maxilFT)
йеМ ' r '  beM  ' r '

a) I f  MW (w ) ~  c with w  = w 0, /w0 - 1 .....-oo and a constant c e l ,  then

λ „ = 2m +1 nb (n i) -  0.5 where m' e Z  is sufficiently small. Go to Step (3).

b) I f  M W  ( n i )  —> 0 for m = m (), m0 - 1 .....-oo, then there are no further

periodicities. Stop the algorithm. T

3) Is λ „  an estimate for a hidden periodicity, then set (/.„ = Y j te~iKt and
t=i

Yt = Yt -  à tel » V i = 1.....T. Set η = n + 1. Go to Step (1).

D. The haar wavelet and daubechies D4 wavlet

The Haar scaling function and the corresponding wavelet Ψ ц  are real-
-valued functions on R+ that are defined as follows (cf. Stollnitz et al. 1995)
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0 < X < 1

otherw ise
ψ H ( x ) -

1

-1

0

0 < X  < 1 / 2
1 / 2 < X < 1
otherw ise.

The Ψц  is in fact part o f a wavelet family introduced by I. Daubechies (1992), 
and also called Daubechies D2 wavelet. Another representative o f this family is the 
Daubechies D4 wavelet ΨD and its corresponding scaling function φD , for which 
no closed form is given. Both functions are defined iteratively using the relations

h (n) = —=  φD (t / 2),φD (t -  n) ,и = Ο,.,.,Ι,
2

Ф D [ *- ] = Σ  h ( n H D (t  -  n ), - j=  Ψο ̂  j = Σ  (-1)1“” h (1 - η )φ D (t  -  n ),

whereforthecoefficients h  (O h  ( 3 ) holds

i (n \ 1W 3  , 3 W 3  , 4 1 -*Jb j ( , 4 3
(0 > = ~ b ¡ T ’13 h (2 ) = - г т Т ’13 ( 3 ) = -W 2 W 2 W 2 '

For further properties or numerical issues refer to (Daubechies 1992) or 
(Mallat 2003).

Table 1
Characteristics o f  the Analyzed Tim e Series

Data Set Start End #
ADF Test PP Test

σ
X (t ) Δ (0 X (t ) Δ(ί)

DB 01-01-07 30-06-09 632 0.71 < 0.01 0.73 < 0.01 1.65
EUR/USD 01-01-07 30-06-09 636 0.62 < 0.01 0.85 < 0.01 0.01
W TI Oil 01-01-07 30-06-09 623 0.87 < 0.01 0.96 < 0.01 2.19
UK Power 07-07-07 13-03-09 623 0.29 < 0.01 < 0.01 < 0.01 12.78

Table 2
The Best Forecasting M ethod for Each Data Set

Data Set Day-Ahead Week-Ahead
DB Multiscale (Haar +  ARIMA) Multiscale (M orlet +  X-12)
EUR/USD Multiscale (Haar +  ARIMA) Denoising +  ARIMA

W TI Denoising +  ARIMA Multiscale (M orlet +  X-12)
UK Pow er Prices Multiscale (M orlet +  X-12) ARIMA
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Table 3
Forecasting Errors of the Deutsche Bank Stock Prices

Day-Ahead Week-Ahead

Classic Methods: MAD RMSE APE MAD RMSE APE

ARIMA 1.162 1.5672 0.0316 1.6705 3.2222 0.0655
X-12 1.6077 2.8988 0.0606 2.6679 12.9264 0.1643
Haar Wavelet: MAD RMSE APE MAD RMSE APE

Denoising +  ARIMA forecast 1.1633 1.7893 0.0322 1.7231 3.4029 0.0702

Denoising +  X-12 forecast 1.2713 2.2147 0.0383 2.6659 8.8941 0.1663
Multiscale forecast (ARIMA) 1.1587 1.5619 0.0316 3.5912 14.959 0.3019
Multiscale forecast (X-12) 1.3185 1.9284 0.0402 2.3495 6.8411 0.1288
Wavelet-based STSM 3.4215 13.4808 0.2275 2.4375 7.3828 0.1380

Daubechies/Morlet Wavelet: MAD RMSE APE MAD RMSE APE

Denoising +  ARIMA forecast 1.1633 1.7893 0.0332 1.7231 3.4029 0.0702

Denoising +  X-12 forecast 1.2713 2.2147 0.0383 2.6659 8.8941 0.1663
Multiscale forecast (ARIMA) 1.2166 1.8132 0.0344 1.6473 3.0939 0.0637
Multiscale forecast (X-12) 1.2175 1.8147 0.0344 1.5947 2.8977 0.0594

Table 4
Forecasting Errors of the Euro/Dollar Exchange Rate

Day-Ahead Week-Ahead
Classic Methods: MAD RMSE APE MAD RMSE APE
ARIMA 0.0873 0.0085 0.0054 0.1129 0.0153 0.0091
X-12 0.1020 0.0126 0.0075 0.1797 0.0419 0.0232
Haar Wavelet: MAD RMSE APE MAD RMSE APE
Denoising + ARIMA forecast 0.1008 0.0124 0.0072 0.0996 0.0123 0.0071
Denoising + X-12 forecast 0.0970 0.0111 0.0067 0.1293 0.0240 0.0119
Multiscale forecast (ARIMA) 0.0840 0.0080 0.0050 0.2765 0.1037 0.0548
Multiscale forecast (X-12) 0.0846 0.0092 0.0051 0.1587 0.0312 0.0181
Wavelet-based STSM 0.1477 0.0234 0.0156 0.1403 0.0266 0.0141
Daubechies/Morlet Wavelet: MAD RMSE APE MAD RMSE APE
Denoising + ARIMA forecast 0.1008 0.0124 0.0072 0.0996 0.0123 0.0071
Denoising + X-12 forecast 0.0970 0.0111 0.0067 0.1293 0.0240 0.0119
Multiscale forecast (ARIMA) 0.0866 0.0085 0.0054 0.1207 0.0158 0.0104
Multiscale forecast (X-12) 0.0871 0.0086 0.0054 0.1103 0.0147 0.0087
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Table 5
Forecasting Errors of the WTI Oil Prices

Day-Ahead Week-Ahead
Classic Methods: MAD RMSE APE MAD RMSE APE

ARIMA 1.0768 1.4420 0.0167 1.6117 2.9530 0.0372
X-12 1.5744 2.8091 0.0355 2.9017 14.4185 0.1193
Haar Wavelet: MAD RMSE APE MAD RMSE APE
Denoising + ARIMA forecast 0.9306 1.3208 0.0125 1.5974 2.9820 0.0368
Denoising + X-12 forecast 1.2967 2.2076 0.0243 2.5311 7.6044 0.0914
Multiscale forecast (ARIMA) 1.0754 1.4880 0.0167 3.0311 11.1294 0.1317
Multiscale forecast (X-12) 1.1203 1.5331 0.0179 1.6987 3.6149 0.0412
Wavelet-based STSM 2.3485 6.6597 0.0793 6.9384 49.1278 0.6874
Daubechies/Morlet Wavelet: MAD RMSE APE MAD RMSE APE
Denoising + ARIMA forecast 0.9306 1.3208 0.0125 1.5974 2.9820 0.0368
Denoising + X-12 forecast 1.2967 2.2076 0.0243 2.5311 7.6044 0.0914
Multiscale forecast (ARIMA) 1.1598 1.5467 0.0193 1.4060 2.2636 0.0284
Multiscale forecast (X-12) 1.162 1.5536 0.0194 1.3957 2.3575 0.0280

Table 6
Forecasting Errors of the UK Power Prices

Day-Ahead Week-Ahead
Classic Methods: MAD RMSE APE MAD RMSE APE

ARIMA 2.1462 5.4182 0.1459 2.5220 7.4728 0.2092
X-12 3.0506 10.6172 0.3066 6.6911 74.2138 1.4268
Haar Wavelet: MAD RMSE APE MAD RMSE APE
Denoising + ARIMA forecast 2.2438 5.6306 0.1605 2.6670 8.2682 0.2336
Denoising + X-12 forecast 3.0503 10.6041 0.3077 2.5025 88.4410 1.7801
Multiscale forecast (ARIMA) 2.2604 5.7186 0.1557 9.0070 111.1020 2.4665
Multiscale forecast (X-12) 2.1715 6.6690 0.1575 5.1985 36.2447 0.8189
Wavelet-based STSM 3.5868 15.6367 0.3823 9.2260 90.2059 2.6168
Daubechies/Morlet Wavelet: MAD RMSE APE MAD RMSE APE
Denoising + ARIMA forecast 2.2438 5.6306 0.1605 2.6670 8.2682 0.2336
Denoising + X-12 forecast 3.0573 10.6209 0.3092 4.1623 34.8051 0.6011
Multiscale forecast (ARIMA) 2.2921 6.1810 0.1566 4.1623 34.8051 0.6011
Multiscale forecast (X-12) 2.1237 5.2731 0.1469 2.6213 9.1848 0.2492


