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A B ST R A C T  *

In expositions of the theory of relativity it is customary to emphasize 
the differences between the Newtonian and Emsteiinian theories of space, 
time and gravitation. On close inspection it appears that these disparities 
are due, in part, to the differences between the languages used to 
express the theories. To every physical theory there corresponds a certain 
mathematical formalism in which the theory is usually represented. 
For the purpose of comparing different theories it is desirable to for­
mulate them in the same mathematical language. Otherwise it is rather 
difficult to ascertain what are the relationships between the basic 
assumption underlying these theories.

Relativistic theories of space-time are most naturally expressed in 
terms of concepts from differential geometry. Following Cartan and 
Friedrichs, we analyze the geometrical structure of space-time in New­
tonian mechanics and compare it with that in relativity. It turns out 
that there are a number of elements common to all theories of space- 
-time: the basic manifold is always assumed to be a four-dimensional 
differentiable continuum, endowed with an affine connection. In the 
theory of relativity, space-time is simply a Riemannian manifold; in 
Newton’s theory the metric structure is more complicated.

The Newtonian metric is degenerate; clearly, it is the limit, as 
c -+  oo, of the relativistic metric. Accordingly, the Newtonian metric 
has those properties of the relativistic gab which are preserved by the 
limiting process. In particular, it is invariant by parallel transport.

The Newtonian mechanics is based on the assumption that there

* The fu ll text of this lecture is contained in a volume edited by B. Hoffm ann  
and dedicated to 'Vaclav H lavaty; to be published in 1965.
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exists an absolute time, t, and that the hypersurfaces (“spaces” ) 
t =  const, are three-dimensional Euclidean. The time t can be taken 
as one of the coordinates; if (x, y, z, t) is a system of coordinates in 
space-time, the motion of a particle can be represented by x =  £ (t), 
V =  T1 (t)> z =  C (t), i.e., by a curve (world-line) in space-time. Neglecting 
gravitation, the first law of dynamics may be formulated as follows: 
there exists a family of privileged motions, called free motions, and 
a system of coordinates (x, y, z, t) such that the free motions are 
characterized by

d2x d2y d2z 
~dt2 =  ~dfi =  ~dt2 =  °

Coordinate systems whose existence is asserted by the first law are 
called inertial. A  transformation leading from one inertial system to 
another is called Galilean. Clearly, i f  we agree to consider the world- 
-lines of free motions as geodesics, the Newtonian space-time becomes 
endowed with an integrable affiine connection.

In a gravitational field, there are no free motions in the previous 
sense. The best one can do is to remove all non-gravitational interactions 
and to consider f r e e  f a l l s  as the family of privileged motions. 
Accordingly, Newton’s first law may be rephrased as follows: there 
exists a family of privileged motions, called free falls, a system of 
coordinates (x, y, z, t) ,and a function cp (x, y, z, t) such that the free 
falls are characterized by

d2x dtp d2y dtp d2z dtp
dt2 dx ’ dt2 dy ’ dt2 dz

Clearly, the class of coordinate changes preserving these equations 
is much larger than the class of Galilean transformations. Usually, one 
considers gravitational fields produced by bounded sources. One then 
can normalize cp by requiring that it vanishes at large distances; this 
eliminates the possibility of more general transformations and restores 
the privileged role of the Galilei group. However, this cannot be done 
when there is a strong gravitational field extending all over space, as in 
cosmology. In any case, we may call world-lines corresponding to free 
falls geodesics, and thereby introduce an affine connection in space- 
-time.

The general geometrical structure of space-time in relativity is very 
well known. In the Newtonian theory the space-time is a differentiable 
manifold N  of class Coo, homeomorphic to R4. The Newtonian notion 
of absolute simultaneity implies the existence of a family T of hyper­
surfaces in space-time. Distinct elemedts of T  do not intersect, through 
every event (point of N) there passes an element of T; all these hyper­
surfaces have the topology of R3. Let t =  const, be the equation of T.
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The family of all free falls determines a symmetric affine connection 
r “c on N. It follows from the first law of dynamics that t can be 
chosen so as to be an affine parameter along all time-like geodesics. 
This defines t up to linear transformations; every such t is called the 
absolute time.

Let (yl, y2, y3) be a system of local coordinates in a hypersurface 
belonging to T. The hypersurface can be represented in a parametric 
form

x a =  xa(yi, y2, y3)

Let ha/} denote the components with respect to (d/dya) of the Eucli­
dean metric tensor of the hypersurface. Its components with respect 
to (d/dxa) are

dxa dxb 
h =  ha?— ~ — T 

dy dyP

Clearly
habtb =  0 where tb =  dbt

and the canonical form of the matrix (hab) is diag (1, 1, 1, 0). The tensor 
hab may be used to define the square of any form and of any space-like 
vector but not of time-lilke vectors. According to what was said pre­
viously

Vchab =  0

The remaining information contained in the first law of dynamics 
may be expressed by

1 ieRa b]cd =  0
and

i.ad D „
cde T  n  n  edchad Rbrd„ +  hbd Rae<1<., =  0

where Rabcd is the curvature tensor.
Pre-relativistic electrodynamics introduces a mew geometric element, 

the ether. It may be defined as a rigging of the hypersurfaces of con­
stant absolute time. Given an ether on N, let ua be the vector field 
tangent to the directions of rigging and normalized so that

uHa =  1

and let us introduce the tensor
g d b  —  h a b  _  u au b jc 2

where c is the velocity of light. If ua is covariantly constant,

Va« 6 =  0
then

d [aFbci =  0 where Fab =  F[ab]



126 Andrzej Trautman

and
V6 Fab =  0 where Fab =  gacgbdFcd

are equivalent to usual Maxwell’s equations for the vacuum.
Clearly, the connection r “c is metric relative to gab

Vcgab =  0

Moreover, the matrix g“b is non-singular. Its inverse, gab, together 
with r « e, defines a flat indefinite Riemammiam (Minlkowskian) geometry 
in N. In pre-relativistic electrodynamics this geometry co-existed with 
the Newtonian structure; it has been used to define the Lorentz group.

The essential step taken by Einstein in 1905 consisted in denying 
any physical significance to the Newtonian structure (t, hab). In special 
relativity, the geometry of space-time is fully determined by the Min­
kowski elements (gab, r “c). Accordingly, all equations of physics may 
contain only these elements, in addition to quantities describing the state 
of the system (this statement is often called the ‘^principle of relativity” ).

When one attempts to apply Newtonian mechanics in cosmology, one 
encounters the following apparent difficulty: assume that the Universe 
is spatially homogeneous and let p(t) be the mean density of matter. 
A  typical solution of Poisson’s equation is

2
cp =  —  T c k g r 2  

•

The corresponding gravitational field, — gradcp, seems to contradict 
the cosmological principle: the particle at r =  0 is unaccelerated while 
all others are. This difficulty disappears if  it is remembered that, in 
this case, it is impossible to introduce a preferred set of inertial frames 
defined up to Galilean transformations. The set of all inertial frames 
is essentially larger and for every galaxy there is one siuch frame with 
respect to which the galaxy is at rest.

The assumption of homogeneity and isotropy leads to the following 
expression for the velocity field of substratum, referred to a certain 
inertial frame

v — r jR-1 dR/dt [2]

where R is an arbitrary function of the absolute time. The motion of 
the substratum provides a natural choice for the ether: the rigging is 
defined by the tangents to the world-lines of elements of the substratum. 
As can be easily shown, this assumption leads to an expression for the 
Doppler shift of light coming from distant galaxies, which is identical 
with the corresponding expression obtained in relativistic cosmology. 
It is not hard to understand the origin of this coincidence. Foor a gab of 
the form [1], a straightforward calculation gives
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gab dxa dxb =  dr2 — 2v • dr dt — (c2 — v2) dt2 [3]
where

x a =  (r, t), dr2 =  dx2 +  dy2 +  dz2, etc.

and a simple coordinate transformation reduces [3], with v of the form 
[2], to a Friedmann line-element,

In addition to giving the same formula for the Doppler shift, 
Newtonian and relativistic cosmologies lead to similar equations for the 
expansion function R(t). This interesting fact was noticed for the first 
time by Miline and McCrea in 1934. The following lines contain a brief 
analysis of the problem: what are the physical situations for which the 
Newtonian and relativistic descriptions are as close as they are in 
cosmology?

Let v (r, t) be a (sufficiently regular) Newtonian velocity field and 
r =  F (r', t) a family of solutions of

satisfying some initial conditions, say, F (r', 0) =  r'. The coordinate 
transformation r -> r', with t unchanged, reduces the line-element [3] to

where x 1', x2', x y are the components of r'.
Consider the Einstein field equations with the cosmological term 

for a dust of density q and four-velocity uaJc =  —cgabtb

For the sake of simplicity, all further considerations will be restricted 
to irrotational motions,

R 2  d r ' 2 - c 2 d t 2

dr
[4]

1 X
^ a b  2  B a b R

For a metric of the form [3], equation [4] implies

curl curl v =  0

curl v =  0

The strain tensor may then be written as

where

d“ Vfi -  y  +  ° a ß

0 =  div v
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gives the rate of expansion and describes the velocity of shear.
I f we denote uadaa =  da/dt +  v* grad a by a, the remaining field equa­
tions [4] assume the form

y  ~ y  ©2 + x = ~~ %nkQ 

20 +  02 +  y a opa“P -  3X=0  [6]

°«f> +  0CTocp =  0

They imply the equation of continuity,

£ +  <?© =  () [7]

On the other hand, the Newtonian equations with a cosmological 
term,

v =  — grad <p

A<p =  4iikg — X

do
—  +  div (gT) =  0

are equivalent to [7] and

0 +  —  02 +  c?“p — X =  — 4izkQ [8]

It is seen by inspection that the relativistic equations [5] and [6] 
imply the Newtonian [8]. Therefore, to any metric [3], solution of 
Einstein’s equations, with irrotational v, there corresponds an analogous 
solution of Newton’s equations, the functions v being the same in both 
cases.

As examples of solutions of the Newtonian equations which lead to 
Einstein spaces, we mention the following:

1) consider a system of test particles ( o =  0) falling radially towards 
the centre of a spherically symmetric body of mass m. If the velocities 
of the particles vanish at infinity, then, according to Newtonian me­
chanics,

v =  _  _r_
f  r r

Substituting this into [3], we obtain the Schwarzschild line-element.
2) in a Newtonian world with a cosmic repulsive force (A >  0), a pos­

sible motion of test particles is given by

v =  ]/X/3 r

The corresponding Riemannian metric is that of the de Sitter space.
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