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THE "FIFTEENTH-CENTURY ROOTS" OF MODERN MATHEMATICS 
THE UNIT SEGMENT. ITS FUNCTION IN BIANCHINI'S DE ARITHMETIC A, 

BOMBELU'S L'ALGEBRA... AND DESCARTES' LA GEOMETRIE 

Die große Aufgabe, welche seit der Pythagoreischen Entdeckung des Irrationalen 
gestellt ist, das uns (namentlich in der fließenden Zeit und der Bewegung) unmit-
telbar anschaulich gegebene Stetige nach seinem in „exakten" Erkenntnissen for-
mulierbaren Gehalt als Gesamtheit diskreter »Stadien« mathematisch zu erfassen, die-
ses Problem ist trotz Dedekind, Cantor und Weierstrass heute so ungelöst wieje. 

H. Weyl, Das Kontinuum, 1918, p. 16. 

INTRODUCTION 

Since the roots of modern mathematics seem to be as old as mathematics itself 
- and by "roots" I mean the fundamental problems of mathematics raised in 
Antiquity, including the problem of continuity and thus also that of the magnitu-
de-number relation - 1 decided to use quotation marks for the part of the title which 
would appear to locate the "roots of mathematics" in a period relatively close to 
our times. And since the answers to the "fundamental problems of mathematics" 
given by mathematicians over thousands of years have not appeared to be fully 
satisfactory to this day, I opened my discussion of the achievements of the 
15th-century mathematician by a passage taken from Hermann Weyl's "Das 
Kontinuum", a work which is devoted to the critical situation of the foundations 
of mathematics, as it originated in Antiquity and as it persists even in the 20th 
century1. 
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Nonetheless, according to a common assumption "modern mathematics" be-
gins in the seventeenth century with Descartes' La Geometrie (1637), a work that 
approached the "task which has been facing us since the Pythagorean discovery 
of the irrationals" in a new way, and led eventually, together with Fermat's 
Isagoge, to the invention of the calculus. Particularly books Two and Three of The 
Geometry are regarded as the essence of Descartes' contribution to mathematics. 
In fact, the correspondence between the equation f(x,y)=0 and the locus satisfying 
this equation expressed by points having coordinates (x,y) relative to axes, is given 
there (p.ex. The Geometry, the second chapter of Book Two: "The method of 
distinguishing all curved lines of certain classes, and of knowing the ratios 
connecting their points on certain straight lines")2. So, as far as the idea of 
coordinates is considered to be the main point in the institution of analytic 
geometry, the appreciation of Books Two and Three of The Geometry seems to be 
justified. If, however, the essence of analytic geometry, and in general of "modern 
mathematics", consists mainly in the new proposal for the solution of the two 
thousand-year old question regarding the magnitude-number relation, then also the 
first book of The Geometry reveals itself significant for the development of modern 
mathematics3. Indeed, it was there that the mathematical tools were set forth which 
then seemed appropriate for solving the problem of the magnitude-number relation, 
and thus also the problem of the continuous-discrete relation, thanks to the 
introduction of the concept of the "unit segment" (a line segment of an arbitrarily 
chosen length, determined as a "unit", and meant to correspond to "1" in arithme-
tic). After having chosen a fixed line conceived as a "unity" Descartes could define 
operations on line segments corresponding to the arithmetical operations. The 
subsequent "merging" of the geometrical problems into algebraic formulas on the 
one hand, and on the other the institution of the Newtonian concept of the number 
understood as a quantity related to a unity (and ultimately, it seems, to a "unit 
segment"), was but a consequence of this first step4. 

According to Descartes himself, topics considered by him in the first book of 
The Geometry aimed at the construction of the mathesis universalis. As for the five 
arithmetical operations, referred to at the beginning of this book, and performed 
with lines related to a "unit segment", they signal, simple as they are, modification 
of the foundations of mathematics. In fact, since the Eudoxus' reply to the question 
of incommensurable magnitudes, in the 5th century B.C., connecting "ratio" and 
"proportio" to geometry, (Elements V), the attribution of n u m e r i c a l values 
to the l e n g t h s of l i n e s e g m e n t s (and to other quantities, such as for 
instance magnitudes of angles), had been excluded5. This situation resulted from 
a hiatus between m a g n i t u d e and n u m b e r (between geometry and 
arithmetic), due, ultimately, to the concept of number being limited to the integers 
alone, and thus inapt to express incommensurabilities. The new formalism, foun-
ded with the introduction of the concept of the "unit segment" of a line into 
mathematics, embraced equally numbers and magnitudes, and made it possible to 
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bridge the gap between "continuous" and "discrete"6. Thus, the geometrical 
concept of the "unit of length" had an impact on the concept of the number. Once 
the b i u n i V о с a 1 correspondence between lengths and the ratios of magnitudes 
was established, the subsequent geometrical definition of arithmetical operations 
- assuming a fixed unit - led to the geometrical definition of the field of the real 
numbers: the expression of magnitude through the measure of length (Bianchini, 
Bombelli, Stevin, Viète, Descartes). Consequently, the ancient geometrical math-
ematics could be abandoned, which led, when used by "naïve" calculators, to such 
logical inconsistencies as operations on different mathematical entities: lines, 
planes and solids (contrary to the requirements of the famous "principle of 
homogeneity")7. Furthermore, the use of the "unit segment", and thus the quanti-
fication of magnitudes (the expression of the ratio of magnitudes through lines 
whose lengths accorded with the arbitrarily preestablished unit segment), influen-
ced the structure of mathematics: it led to the reversal of the relation between 
algebra and geometry. 

It is a truism to say that the Cartesian mathematics had an impact upon early 
modern physics, providing it with a tool proper to a quantitative descrtiption of 
nature. Newtons Philosophiae naturalis principia mathematica and the idea of the 
absolute space included in them was but one of the results obtained with this tool8. 

Until quite recently the "invention" of the "unit segment" has been commonly 
attributed to the seventeenth-century mathematicians. The fact, however, that 
Descartes was the first to publish the complete and coherent exposition of the 
function of the "unit segment" in geometry does not mean that he was the first to 
see the advantages of the device. As it is known, in the mathematics of Islam the 
constructions with the "unit segment" date from at least the 9th century. Equally 
al-Farabi (870-950) Thebit (830-901) al-Bagdadi (d. 1037) and Omar Khayyam 
( 1048-1130) used them as a remedy against the formal inconsistencies that resulted 
from arithmetical operations with "heterogenous" geometrical objects9. Also De-
scartes' choice of constructions involving the "unit segment" aimed at avoiding 
these inconsistencies. However, there exists a significant nuance between the 
Muslims' proposal and Descartes' one. Contrary to the Oriental tradition that 
introduced not only unitary lines into arithmetical operations, but also unitary 
planes and solids (as did Bianchini in the fifteenth century Italy), Descartes used 
a "unit of length" to express all dimensions. In this way he liberated mathematics 
from the "principle of homogeneity", proposing instead the "principle of nonhomo-
geneity", based on the following proportion: 

, 2 2 3 

1: a = a : a = a : a ... 

Thus the p r o d u c t ab=c is defined by Descartes as the p r o p o r t i o n : 

"unit segment" : a = b : с 

the procedure that will be subsequently adopted by Leibniz and Newton. 
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In Descartes' words: 
"Il est aussy a remarquer que toutes les parties d'vne mesme ligne, se 

doivent ordinairement exprimer par autant de dimensions l'une que l'autre, 
lorsque l'vnité n'est point déterminée [...] mais que ce n'est pas de mesme 
lorsque l'unité est déterminée, a cause quelle peut estre sousentendue par 
tout ou il y a trop ou trop peu de dimensions", [p. 299] 

1. ITALIAN RENAISSANCE MATHEMATICS 
AND DESCARTES' ACHIEVEMENT 

Studies on the Italian Renaissance mathematics that were undertaken at the 
beginning of the 20th century revealed much the same function of the "unit 
segment", as the one that occurs in Descartes' La Geometrie, in Raphael Bombel-
li's L'Algebra. Parte magiore dell'arithmetica, a book written about 1560 and 
printed in 1572. Bombelli's doctrine about the "unit segment" is still present in 
another work by him, which is in fact a continuation of L'Algebra..., and contains 
books IV and V of it. The later work, preserved in a manuscript copy in the 
Biblioteca dell'Archiginnasio, Bologna, ms. nr. 1569, and composed about the 
same time as L'Algebra..., was discovered as late as 1923 and first published in 
192910. The assimilation of all measures of magnitude to the measure of length 
was done by Bombelli expressly. In fact he calls his exposition of algebra the 
Algebra linearia. 

About a hundred years later Descartes proceeded in a similar way, when he 
presented the "unit segment" as a device which would enable an approach to lines 
in terms of numbers, and vice-versa: 

"Ainsi n'at 'on autre chose a faire en Geometrie touchant les lignes qu'on 
cherche, pour les preparer a estre connues, que leur en adiouster d'autres, 
ou en oster, Oubien en ayant une, que ie nommeray l ' v n i t é pour la r a-
p p o r t e r d'autant mieux aux n o m b r e s , &qui peut ordinairement 

- estre prise a d i s c r e t i o n , puis en ayant encore deux autres, en trouuer 
vne quatriesme, qui soit à l'vne de ces deux, comme l'autre est a l'vnité, ce 
qui est le mesme que la Multiplication; [...] Et ie ne craindrai pas dintroduire 
ces termes d'Arithmétique en la Geometrie, affin de me rendre plus intelli-
gible." [p. 297-298] 

Recently, one more pre-Cartesian geometrical construction involving the "unit 
segment" was discovered, about a hundred years older than the one extant in 
Bombelli's works (and at the present state of research, the oldest known in the 
Occidental mathematical tradition). The construction is included in Giovanni 
Bianchini' s De arithmetica, a treatise written in Ferrara about 1440, and it was first 
published in 1994". It is not our aim to consider here possible Bombelli's 
dependence on Bianchini. It seems significant, however, that Bianchini was 
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renowned by sixteenth-century mathematicians. Cardano, for instance, commen-
ted on Bianchini's tables devoted to spherical trigonometry (Tabulaeprimi mobi-
lisé2. 

Bianchini's and Bombelli's treatises seem to point to the "European story" of 
the pre-Cartesian constructions with the "unit segment". It is not inconceivable that 
this story was rooted in the mediaeval Oriental mathematics. 

2. GIOVANNI BIANCHINI'S DE ARITHMET1CA 

Bianchini is a personality of the fifteenth century13. His dated works come from 
the decades between 1442 and 1466. Presumably, however, he was ready to 
undertake research on mathematics as early as the twenties of the fifteenth century, 
when he left Venice for Ferrara, invited there in 1427 by Niccolo d'Este for the 
purpose of taking care of the finances of the d'Este's Court. The duty required an 
accomplished mathematician. As a rule, such mathematicians were educated at 
the scuole d'abaco. According, however, to Bianchini himself, he was an autodi-
dact. The fact that he had been interested in mathematics and astronomy since his 
early youth spent in Venice might be pertinent to the question of possible Oriental 
inspirations of Bianchinis doctrines, since Venice at that time was a place of not 
only commercial exchanges. 

One of Bianchinis earliest dated works is the Compositio instrumenti (1442), 
a treatise on the construction and use of a surveying instrument, famous thanks to 
the decimal positional fractions that were introduced in it for the sake of compu-
tational purposes, together with an explanation of the use of the decimal point14. 
The correspondence with Regiomontanus is among Bianchini's last dated works. 
It began in 1463 and lasted for some months15. In the period of about twenty years 
that separated these two works Bianchini dressed several sets of astronomical 
tables, and of the tables of trigonometric functions that he accompanied by rules 
of their use (Canones tabularum). The astronomical summa entitled Flores Alma-
gesti occupies aparticular position among Bianchini's works as well as among the 
entire fifteenth-century scientific production16. 

The Flores, inspired by Ptolemy's Almagest, and composed of ten copious 
treatises, were intended by their author to provide the reader with the whole body 
of astronomy. The mathematical introduction to the Flores comprises the treatises: 
De arithmetica, Algebra, and De proportionibus, followed by an exposition of the 
elements of plane and spherical trigonometry that also touched upon the composi-
tion of the tables of trigonometrical functions, and their use for the solution of 
problems of spherical trigonometry. It is the De arithmetica that is particularly 
pertinent to the present study17. 

The De arithmetica belongs to a small group of the fifteenth-century arithme-
tical treatises intended for university milieus. Composed of twenty one chapters 
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written in Latin, it differs from fifteenth-century treatises devoted to commercial 
arithmetic, written mostly in vernaculars18. Furthermore, Bianchini's ambition, at 
variance with those of the writers of the "trattati d'abbaco", was to present not only 
rules of calculation, but also to give geometrical principles on which they were 
based. 

In the Introduction to the De arithmetica Bianchini presents the decimal 
positional number system. From the Introduction, and then from the chapters 
devoted to the five arithmetical operations, emerges Bianchini's concept of num-
ber. This concept is confirmed subsequently by Bianchini ' s doctrine on proportions 
to be found in the De proportionibus, and then by his exposition of arithmetical 
operations with decimal positional fractions, found in the Compositio instrumenti. 
In the further parts of my paper I will refer to the De arithmetica and De 
proportionibus (i.e. to the first and third treatises of the Flores Almagesti) as well 
as to the Compositio instrumenti. All these writings, coming from the early forties 
of the fifteenth century, are preserved in manuscripts from the period included 
between the mid-fifteenth and the first decade of the sixteenth century. 

3. A NUMBER AS AN EXPRESSION OF A QUANTITY. 
"NUMERALS" AND "NUMBERS". THE "ONE" CONSIDERED 

AS A NUMBER AMONG OTHER "SIMPLE NUMBERS" 

The following "definitions" of the number open the De arithmetica: 
"I state that arithmetic is determined by numbers. I note two definitions 

of them, viz. definition of the simple number and of the composed one. And 
generally each number, simple as well as composed, of any quantity: little, 
large or largest, consists of only nine substantial numerals. The denomina-
tions are given to numbers accordingly to the order of places occupied by 
the numerals"19. 

The two "orders of numbers" are discussed in the next section of the Introduc-
tion: 

"First [I will tell] of the first order. Any simple number is included 
between unity and nine. [...] The numerals with their q u a n t i t y are the 
following: one, two, three, four, five, six, seven, eight, nine: 1 2 3 4 5 6 7 8 
9. Of these numerals are composed all numbers of a n y q u a n t i t y that 
exists. A tenth numeral is added to them, viz. the "zéro" which is called the 
"image of number", cifra. It denotes nothing in numbers. 

As for the second order, by which are noted all quantities that can be 
expressed by simples numbers as well as by composed ones, [it includes]: 
numbers, decades, hundreds, thousands and millions, as called by the 
Latins"20. 
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According to Bianchini: 
- the substantial numerals are nine, to which, the zero is added, 
- since each of numerals denotes a respective simple number thus the simple 

numbers are also nine (the unity Is considered as a number), 
- each number represents a q u a n t i t y that corresponds to this number. 
Thus, the essence of Bianchinis number concept is the number-quantity rela-

tion. Incidentally, it is interesting to note that Bianchini 's statement evokes the well 
known definition of the number put forward by Simon Stevin at the beginning of 
the Arithmétique ( 1585): 

"Nombre est cela, par lequel s'explique la quantité de chacune chose". 

Actually, Bianchini anticipates Stevin 's concept of number. Furthermore, at 
variance with the tradition established by the Pythagoreans and fol lowed by 16th 
century mathematicians (for instance by Bombelli o.e., p. 11), Bianchini begins 
the series of numbers with "one". The "one" is a numeral among other numerals, 
and a number among other numbers. Numbers do n o t originate through the 
cumulation of the indivisible units (that are themselves not numbers). At this point, 
Bianchini 's concept of number evokes that of Newton. I mean here the first part 
of the famous definition of the number given by Newton at the begining of the 
Arithmetica universalis (1707), in which it is explained what the number is n o t : 

"Per numerum non tam multitudinem unitatum [...] intelligimus..." 

4. THE N U M B E R " O N E " IN THE ARITHMETICAL OPERATIONS 

Since the "one" is considered by Bianchini as a number (and not as a special 
entity such as a "principle generating numbers"), thus it can be manipulated in 
arithmetical operations in the same way as the other numbers are. For instance, 
being divisible itself, it may also function as a divisor. Although the possibility of 
division by one is not stated explicitly by Bianchini (perhaps just because of the 
self-evident nature of this operation), it emerges f rom the rules of division of 
fractions and division by fractions, given by Bianchini in the Introduction to the 
De arithmetica. In fact, when considering the division of fractions by integers or 
by fractions, or else when considering the division of integers by fractions, 
Bianchini uses a concept of the "inverse of number" for multiplication: one divided 
by an integer or by a f r a c t i o n (fractions are considered by Bianchini to be 
numbers). 

"Regulae" given in the Introduction to the De arithmetica: 

"When integers are divided by fractions they are multiplied by unity in 
proportion to the divisor. 

When fractions are divided by integers they are multiplied by unity in 
proportion to the number divisor. 
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When fractions are divided by fractions the dividend is multiplied by 
unity in proportion to fractions of the divisor"21. 

Bianchini seems to be the first in the West to procédé in that manner when 
fractions are involved in the division (i.e. to apply the inverse of the divisor for 
multiplication ). This procedure seems to be simply a consequence of his concept 
of number. According to the "definitions of numbers" and the "Rules of operations 
with fractions" Bianchini's "number" results from the relation of the quantity to 
its (preestablished) unit. Consequently, the multiplication of numbers may be 
expressed through a proportion 1 : a = b : ab. 

Thus, contrary to the earlier mathematicians for whom the "ratio" of two 
quantities (or of two numbers) expressed their commensurability, for Bianchini the 
"ratio", involved in the concept of number (in Bianchini's concept of number 
fractions are included), expresses the commensurability of a quantity with the unit 
of this quantity. 

Newton's definition of number (the beginning of which was quoted above), is 
equally based on the relation of a quantity to its determined unit. 

"Per numerum non tam multitudinem unitatum, quam abstractam quan-
titatem cujusvis ad aliam ejusdem generis quantitatem, quae pro u n i t a t e 
habetur, rationem intelligimus." [the beginning of the Arithmetica univer-
salis], 

Newton, however, formulates this relation overtly, unlike Bianchini whose idea of 
the relation "quantity - its unit" results from the rules of the operations with 
fractions. 

5. BIANCHINIS CONCEPT OF THE "UNIT SEGMENT" AND THE 
INFINITE (?) DIVISIBILITY OF THE UNITY: THE INTRODUCTION, 
CHAPTER VIII, AND THE BEGINNING OF CHAPTER XII OF THE 

DE ARITHMETICA, AS WELL AS CHAPTERS II-IV OF THE 
COMPOSITIO INSTRUMENT! 

The problem of the infinite divisibility of the unity appears in Bianchini's De 
arithmetica and in the Compositio instrumenti on three occasions, namely: when 
the definitions of number are formulated, then when the concept of the common 
fractions and of operations with them is treated, and finally when the concept of 
the decimal positional fractions and of operations with them is introduced. 

In the De arithmetica two of these subjects are present (although the exten-
sion of the decimal number system to fractions is only briefly touched upon), 
whereas in the Compositio instrumenti attention is paid to the explanation of the 
principles of the decimal positional fractions, together with rules of operations 
with them, the use of the decimal point included22. 
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Although it is difficult to establish which of these two treatises was written first, 
I suppose that the De arithmeticci had been written before the Compositio instru-
menté. In the De arithmetica Bianchini considers, apart from the subjects men-
tioned above, subtractive and negative numbers, quadratic irrationals, and surds in 
general. 

In chapter VIII of the De arithmetica, entitled De practica in radicibus 
universalibus operanda, Bianchini states 

"Root" has the same meaning as "principle" or "beginning" or "base", 
and it acquires its name [value] in accordance to its determined end. 
Sometimes this "determined end" is looked for on the basis of the known 
root, and sometimes on the contrary, by a given name [value] the root is 
searched for, from which it originated. 

Sometimes the name [value] of the root is given in numbers, and also 
the root [of this "value"] is given in discrete numbers. 

Sometimes, however, it is not possible to find out a root in discrete 
numbers, and then it is necessary to find it in a continuous quantity, and this 
sort of root is usually called a "surd root". It is found out through the 
geometrical demonstrations, by 1 i n e s or p 1 a n e s or s о 1 i d s" . 

Bianchinis doctrine on surds is completed in Chapter XII of the De arithmetica: 
De radicibus surdis in quantitate continua inveniendis. This chapter, that sub-
sequently will be the subject of our particular attention, begins as follows 

"I want a square root of 24. And since it is not possible to find it in 
numbers, I am searching for it in continuous quantity which means demon-
strating it [its value] through a line. 

And for the sake of the explanation of the reason why this root can not 
be found in integers, I state that this is obvious because the value of this root 
has to be more than 4 and less than 5, and what happens between 4 and 5 are 
fractions. 

And it is known by the the third definition of this [treatise] that any 
fraction multiplied by itself i n c r e a s e s i n f r a c t i o n and escapes 
from the unity, and will never produce an integer"2 5 . 

This "third definition" to which Bianchini refers is as follows 
"When fractions are multiplied by fractions the product will be fractions 

of fractions"2 6 . 

Bianchini had two options of coping with fractions or surds considered as 
numbers: either to introduce into arithmetic concepts proper to geometry (which 
would lead him to a logical inconsistency), or to make recourse to proportions. He 
chose the second. Once the legality of division of "one" and by "one" was 
established, which means also: once it was legitimate to introduce the "one" to the 
theory of proportions (according to Bianchini proportions are fractions), Bianchini 
could do both: first to apply the "one" to operations with fractions (in fact, the 
division of a fraction by an integer or by a fraction is intended by Bianchini as 
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a multiplication of this fraction by the inverse of the divisor), and second to express 
the number "one" geometrically, i.e. by a "unit segment", and to apply it to the 
arithmetical operations with surds (extraction of a surd root). 

6. DESCARTES, BOMBELLI AND BIANCHINI: 
ON THE APPLICATION OF THE "UNIT SEGMENT" 

TO THE EXTRACTION OF SQUARE ROOTS 
(FROM NOT SQUARE NUMBERS). 

Since the idea of the application of the "unit segment" to the algebrical 
transformations is latent in the Elements it is thus to the Elements that Bianchini 
refers himself (following in this way the example of the Muslim mathematicians 
or independent of them?). As for Bombelli and Descartes, both of whom had the 
same background in geometry as Bianchini, neither of them refers to Euclide or 
considers it necessary to give proof of their statements concerning the use of the 
"unit segment"27. 

The famous fragment of The Geometry runs as follows 
"...Ainsi na-t-on autre chose a faire, en geometrie, touchant les lignes 

qu'on cherche, pour les preparer a estre connues, que leur en adiouster 
d'autres; 

ou bien, en ayant vne que ie nommeay l ' u n i t é pour la rapporter 
d'autant mieux aux nombres, et qui peut ordinairement estre prise a discre-
tion, puis en ayant encore deux autres, en trouver vne quatrième, qui soit 
a Г vne de ces deux comme l'autre est a l ' u n i t é ce qui est le mesme que 
la Multiplication; [...] 

ou enfin trouver une, ou deux, ou plusieurs moyennes proportionnelles 
entre l ' u n i t é et quelque autre ligne, ce qui est le mesme que tirer la raci-
ne carrée, ou cubique, etc." [p. 297-298] 

Then the exemplification of the principle is given through the case of the 
extraction of a square root 

"Ou s'il faut tirer la racine quarrée de GH, ie luy-adiouste en ligne droite 
FG, qui est l'vnité, & diuisant FH en deux parties esgales au point K, du 
centre К ie tire le cercle FIH, puis esleuant du poit G vne ligne droite iusques 
à I, a angles droits sur FH, c'est GI la racine cherchée. 

le ne dis rien icy de la racine cubique, ny des autres, à cause que i'en 
parleray plus commodement cy après." [p. 298] 

The same idea is expressed in the following way in Bombellis L'Algebra...: 
"Sia linea b d la quale sia 7, cioè sette volte linea g, e che si detta linea 

se ne voglia il creatore. Allunghisi la d b sino in a, et sia la a b pari a la 
g, et sopra la a d si faccia il semicirculo a f d, e dal punto b si tiri ad 
angolo retto la bf sinochetocchilacircumferentia f, la bf sara il creatore 
délia b d, cioè di 7."28 
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As for Bianchini' s idea of the application of the "unit segment" to the extraction 
of the square roots from not square numbers, it is presented in chapter XII of the 
De arithmetica, entitled De radicibus surdis in quantitate continua inveniendis. 
Bianchini's chain of reasoning, reconstructed above thanks to the elements of 
Bianchini's teaching on mathematics inherent in the De arithmetica and De 
proportionibus just leads to the concept of the mean proportional, in which the 
"unit segment" is involved. Then, in the 16th and 17th centuries, the same concept 
of the "unit segment" will function in Bombelli 's Algebra linearia and in Descar-
tes' La Geometrie. 

Bianchini: Bombelli: 

De radicibus surdis... 

В D 
H 

Modo di trovere il lato di un numéro in linea. 

a 

Quaero radicem de 24. Et quia in numeris 
non est posibile invenire ipsam, quaero in 
quantitate continua, scilicet in linea de-
monstrare ipsam.[...] 

Est enim linea longitudinis 24 producta 
secundum mensuram tuam, sit ergo linea 
AB. 

Et continuabo [eam] a puncto В per quan-
titatem u n i u s numeri, secundum mensu-
ram primo mensuratam, quae sit BD. 

Deinde totam lineam AD dividam in du-
abus partibus aequalibus in puncto F, super 
quem firmabo pedem circini et componam 
circulum secundum quantitatem diamtri 
AFBD. 

Sia linea a una misura data per la unita [...] 
e la linea b с si è 7 delle dette misure, délia 
quale si voglia il lato, 

allunghisi с b fino in g facendo b g pari 
ail 'a, 

e sopra la с g si faccia mezo cerchio с h g, 
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Postmodum supra punctum В erigam per- e del punto b si tiri b h ad angolo retto 
pendicularem usque ad circumferentiam, sopra la с g fino alla circonferentia h\ 
quae sit ВО, quam etiam continuabo usque 
in P, et erit linea OBP. 

Dicoen imquod l inea ВО est latus quadrati la b h sara il lato di be cioè di 7. 
supeficiei de 24. 

Et hoc probatur per 14 secundi atque per 3 
et 34 tertii [Euclidis...]. 

CONCLUSIONS 

Geometrical constructions with the "unit segment" developed between the 9th 
and 17th centuries. They were introduced in the Moslem East as early as the 9th 
century and developed until 13th. Subsequently, in the first half of the 15th century, 
they appeared in the West, in Italy, in the mathematical Introduction to an 
astronomical summa. Although the author of this summa was esteemed by his 
contemporaries for mathematical and astronomical skills, and his work known 
throughout Europe, the constructions involving the "unit segment" did not exert 
any influence, it seems, during the next hundred years. The next time the "unit 
segment" appears is about 1550, in Rafael Bombelli's treatises on algebra (pub-
lished in 1572 and in 1929), then it is to be found in Simon Stevin's Arithmétique 
(1585), and finally in Descartes La Geometrie (1637). The constructions with the 
"unit segment" contributed to the modern concept of the number given in Newton' s 
Arithmetica universalis (1707). 

In Bianchini's De arithmetica the "unit segment" is present as a consequence 
of Bianchini's own concept of unity, and of the role of the unity in proportions. 
But, albeit this "non-accidental" presence, it does seem to be used by Bianchini 
casually, and to function merely as an illustration (a very proper one) of the 
magnitude-number relation; or else as an indication of the possibility of the 
"quantification of magnitude" (which is not of minor importance), without, how-
ever, indicating all its power as a mathematical tool. As for Bombelli, he defines 
arithmetical operations on lines, and thus he builds his Algebra linearia on the 
concept of the "unit segment". Finally, Descartes introduces the concept of the 
"unit segment" systematically into mathematics, with a view to constructing of the 
mathesis universalis. 

At this point several questions pose themselves concerning, i.a., the possible 
ways of transmission of the concept of the "unit segment" from Oriental mathe-
matics to the West (via Venice ?), and subsequently of the possible influence of 
Bianchini's De arithmetica upon Bombelli's works, and thus upon the develop-
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ment of the early modern mathematics. Further research is required in order to 
answer these questions. 
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19 Johannis Blanchini FlorumAlmagesti tractatusprimus. De arithmetica. Prohemium. 
Arithmetica dico quod determinatur per numéros. Et duas noto definitiones numerorum, 
videlicet numerus simplex et numerus compositus. Et generaliter omnis numerus, tarn 
simplex quam compositus, cuiuscumque quantitatis, parvae, magnae seu maximae, com-
ponitur solummodo cum novem substantialibus figuris [...] 

2 0 Et primo de ordine primo. Dico, quod numerus simplex comprehenditur solummodo 
ab unitate usque in novem et cum novem figuris demonstratur quilibet secundum suam 
quantitatem. Quae figurae cum cuiuslibet quantitate sunt unum, duo, très, quattuor, 
quinque, sex, Septem, octo, novem: 1 2 3 4 5 6 7 8 9. 

Et in istis figuris consistit omnis numerus cuiuscumque quantitatis existât. Quibus 
etiam addita est décima figura, videlicet 0, quae vocatur figura numeri, cifra, et nihil in 
numeris dénotât. 

In secundo autem ordine, per quem notantur omnes quantitates, tam simplices quam 
compositae quae numerari possint [quantitates istae] determinatae sunt per quinque deno-
minationes secundum Latinos, videlicet: numeri, decenae, centenaia, milliaria et millioni. 

21 De arithmetica, Prohemium [Regulae:] [...] Quando integri dividunturperfractiones 
multiplicentur integri secundum proportionem unitatis ad ilasmet fractiones divisoris. 

Qando fractiones dividuntur per intégra multiplicentur fractiones secundum proportio-
nem unitatis ad numerum divisorem. 

Quando fractiones per fractiones dividuntur multiplicentur fractiones dividendae se-
cundum proportionem unitatis ad fractionem divisoris. 

2 2 G. R o s i ń s k a : Decimal positional fractions... op. cit., pp.24-25. 
2 3 I consider this question in the Decimal positional fractions... op. cit., p. 17. 
24 De arithmetica, c.8: Radix idem sonat sicut principium vel ortus aut fundamentum 

et secundum eius determinatam finem acquirit pronomen. Et aliquando per notam radicem 
datam quaeritur eius determinatus finis et aliquando econverso, per datum pronomen 
quaeritur radix ex qua oritur. Quod aliquando datum est pronomen radicis in numeris etiam 
ipsius radix in numeris reperitur discretis, et aliquando non est possibile ipsam invenire in 
numeris discretis, et tunc necesse est ipsam invenire in quantitate continua. Et haec vocatur 
communiter surda radix et invenitur per lineas et superficies aut corpora cum geometricis 
demonstrationibus. 

25 De arithmetica, c.12: Quaero radicem quadratam de 24. Et quia in numeris non est 
possibile ipsam invenire, quaero in quantitate continua, scilicet in linea demonstrare ipsam. 
Et ut tibi patefiat causa propter quod in numeris non invenitur, dico quod manifestum est 
radix ipsa in numeris integris non cadit, quia numerum ipsum oportet esse plus 4 et minus 
5, et inter 4 et 5 cadunt fractiones. Et notum est per tertiam definitionem huius quod 
quaelibet fractio per seipsam multiplicata crescit in fractione et ab unitate elongatur, quia 
non unquam producitur integrum, ergo etc. 

26 De arithmetica, Prohemium: Quando fractiones multiplicantur per fractiones pro-
ductus erit fractiones fractionum. 

2 7 Bombelli refers himself to the Elements in the first book of the L'Algebra..., as for 
Descartes relation to the Elements see the opinion presented by J.M.H. В о s : The structure 
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of Descartes' "Géométrie". In: J.M.H. В о s : Lectures in the History of Mathematics. 

Providence 1993, pp.37-57. 
28 L 'Algebra. Opera di Rafael Bombelli da Bologna... op. cit. p.41. In the foot-note 23 

E. В o r t о 1 o 11 i states: "Questo e un chiaro esempio di applicazione del segmento 

unitario a una costruzione geometrica. Le costruzioni sono basate sui noti teoremi eucli-

dei". 

Grażyna Rosińska 

M A T E M A T Y K A X V WIEKU A POCZĄTKI M A T E M A T Y K I N O W O Ż Y T N E J 
ODCINEK JEDNOSTKOWY 1 JEGO FUNKCJA W BIANCHINIEGO DEARITHMETICA, 

BOMBELLEGO L'ALGEBRA... I KARTEZJUSZA LA GEOMETRIE 

Funkcja „odcinka jednostkowego" w Geometrii Kartezjusza jest dobrze znana: począ-

tek księgi pierwszej tego dziełka, uznanego za przełomowe w rozwoju matematyki, 

przynosi objaśnienie w jaki sposób, stosując taki właśnie odcinek, wyrazić geometrycznie 

działania arytmetyczne zarówno na liczbach wymiernych jak niewymiernych. A więc 

i odwrotnie-jak przy pomocy l i c z b y , będącej przedmiotem arytmetyki, wyrazić 

w i e l k o ś ć będącą przedmiotem geometrii. W historii matematyki odnotowuje się to, 

wraz z wprowadzeniem systemu współrzędnych (przez Kartezjusza oraz Fermata), jako 

wydarzenie otwierające drogę matematyce nowożytnej. 

W ten sposób już pierwsze sformułowania w Geometrii Kartezjusza przynoszą, w po-

staci „odcinka jednostkowego", narzędzie do skonstruowania „mostu" nad przepaścią 

dzielącą, zgodnie z matematyką starożytnych, liczbę i wielkość. Przepaść zaś wynikła stąd, 

iż liczba, według koncepcji Pitagorejczyków z istoty swej „dyskretna", nie mogła wyrazić 

wielkości, z natury ciągłej. Wprowadzenie do geometrii „odcinka jednostkowego", który 

miał odpowiadać jedności w arytmetyce, nazywane jest przez historyków matematyki 

„trikiem", który po pierwsze uwolnił algebrę geometryczną od takich absurdów jak 

mnożenie „brył przez odcinki", czy „powierzchni przez bryły", następnie umożliwił 

Kartezjuszowi skonstruowanie geometrii analitycznej, a dalej, wraz z pracami Leibniza 

i Newtona, powstanie analizy matematycznej, a więc matematycznego narzędzia dla 

nowożytnego przyrodoznawstwa. 

Włoski matematyk i historyk matematyki, Ettore Bortolotti, wykazał w latach między-

wojennych, że pomysł „odcinka jednostkowego" znany był przeszło sto lat wcześniej niż 

użył go Kartezjusz. Rafael Bombelli posłużył się nim w swojej Algebrze (Algebra line-

aria), dziele napisanym około połowy X V I wieku, którego część pierwsza (księgi I - I I I ) , 

ukazała się w roku 1572, a część druga (księgi IV i V ) , w roku 1929. Zarówno w części 

opublikowanej w X V I wieku, jak i w tej opublikowanej w wieku X X Bombelli używa 

„odcinka jednostkowego" do wyrażenia geometrycznie działań na liczbach (i odwrotnie 

do przeprowadzania działań arytmetycznych na odcinkach). 

Autorka odnalazła pomysł zastosowania „odcinka jednostkowego" do wyrażenia 

pierwiastkowania, w analogiczny sposób jak to czynili Bombelli i Kartezjusz, w dużo 
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wcześniejszym dziele, a mianowicie w traktacie De arithmetica napisanym około 1440 
roku przez matematyka działająćego w Ferrarze, Giovanniego Bianchiniego (Ioannes 
Blanchinus, de Blanchinis). W ten sposób historia stosowania „odcinka jednostkowego" 
- pomysłu ważkiego w konsekwencje dla nowożytnej matematyki - została przesunięta 
wstecz ponad sto lat w stosunku do dzieła Bombellego, a ponad dwieście lat w stosunku 
do dzieła Kartezjusza. Jest to „historia europejska" odcinka jednostkowego. W świecie 
Islamu bowiem był on znany już we wczesnym średniowieczu, jednak nie posłużono się 
nim następnie do skonstruowania „nowej geometrii", jak to w Europie uczynił Kartezjusz. 
Autorka nie zajmuje się możliwymi wpływami myśli arabskiej na Bianchiniego, natomiast 
sygnalizuje możliwość kształcenia Bianchiniego w Wenecji, będącej w XV wieku centrum 
wymiany nie tylko handlowej, ale także intelektualnej między Europą i krajami Islamu. 
Generalnie, sprawa rzeczywistych wpływów myśli Islamu na rozwój europejskiej mate-
matyki w XV wieku (pomimo formalnego odżegnywania się uczonych Renesansu od 
wszelkich tradycji nie-klasycznych), nie została dotąd poddana systematycznym bada-
niom. 


