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A b s t r a c t

In the analysed set of socioeconomic phenomena and processes results differing from the others
may occur. Revealing such untypical observations is an important research issue as they may distort
the statistical analysis of the investigated phenomenon. The paper discusses the types of untypical
observations in two-dimensional sample. The method for detecting untypical observations in linear
regression based on the measures of observation depth in the sample was proposed that was
illustrated on the base of a numeric example.
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A b s t r a k t

W analizowanych zbiorze danych zjawisk i procesów społeczno-ekonomicznych mogą wystąpić
wyniki odbiegające od pozostałych. Ujawnienie takich obserwacji nietypowych jest istotnym zagad-
nieniem badawczym, gdyż mogą one zniekształcać analizę statystyczną badanego zjawiska. W pracy
omówiono rodzaje nietypowości obserwacji w próbie dwuwymiarowej. Zaproponowano metodę wy-
krywania obserwacji nietypowych w regresji liniowej opartą na miarach zanurzania obserwacji
w próbie, którą zilustrowano przykładem liczbowym.



Introduction

The sources of statistical data are diversified and depend on the character
of the object that is the subject of research. Analysing the general population
from the perspective of two or more statistical characteristics the search for
and obtaining knowledge on the relations linking individual phenomena is
important. Knowledge of correlations occurring between phenomena and
processes is helpful in, among others, projecting their development. Analysis of
regression is one of the more important and frequently applied statistical
methods finding application in, among others, enterprise management and
economy. Always, however, the risk exists that observations not matching the
other observations will appear in the sets of data. The consequences of using
data containing untypical observation for designing the regression function
may be expressed by poorer matching of the function to the empirical data.

Currently the methodology of statistical research applicable to analysis of
untypical data has developed widely. It has become one of the more important
problems in multidimensional statistical analysis. The problem of untypical
observations is presented relatively widely in the statistical literature. In the
work by BARNETT (1978) the causes for appearance of untypical observations
and methods of dealing with them have been described. The untypical observa-
tions in the deterministic sense that resulted from specific explainable causes
and untypical observations in statistical sense that are inconsistent with the
assumed probability distribution were identified. For the purpose of untypical
observations identification, e.g. the Dixon’s tests based on the quotient of the
difference of the observation suspected to be untypical with the preceding or
following observation (see, e.g. TRYBUŚ 1983) of Ferguson’s skewness and
kurtosis tests (FERGUSON 1961) can be applied.

In the subject literature considerations on the here discussed subject can be
found, among others, in the works by: BARNETT and LEWIS (1978), CARONI

(1993), CZEKAŁA (2001), HUBER (1981), ROUSSEEUW and LEROY (1987), ZELIAŚ

(1996). The issue of untypical observations in case of a small sample is
discussed in the work by KOWALEWSKI (1994).

In 1975, Tukey introduced the notion of the depth of a point in multidimen-
sional sets. Thanks to allocating to each observation of a value of the depth
measure corresponding to it, it is possible to rank statistical units according to
their distance from the central cluster. The depth may be used for visualisation
of numeric data, both one- and multidimensional and for determination of
untypical observations. The notion of depth of the data was developed exten-
sively by many researchers also from the perspective of its suitability for
statistical description of one- and multidimensional data. Considerations
concerning that issue can be found, among others, in the works by: HE and
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WANG (1997), KOSHEVOY (2002), YEh and SINGH (1997), ROUSSEEUW and RUTS

(1997), STRUYF and ROUSSEEUW (1998) as well as ZUO and STERFLING (2000).
The paper discusses the types of untypical observations in the two-dimen-

sional sample. The method for detecting untypical observations in linear
regression will be proposed in which the standardised residues (see, e.g.
PAWEŁEK and ZELIAŚ 1996) as well as measures of depth of the observation in
the sample will be used. At the beginning it will be discussed in detail and next
illustrated on the numeric example.

Untypical observations in two-dimensional sample

The observation that does not match the configuration of the entire set of
elements is called the untypical observation (ZELIAŚ 1996). Such observations
may be a consequence of an error in measurement or in recording, application
of inappropriate random sample selection method; they may originate from
a different population or result from lack of homogeneity of the statistical
sample. If untypical observations appear in the analysed set of data, they can
be rejected, their values can be adjusted or they may be accepted and
appropriate methods of statistical data analysis can be applied. Untypical
observations change and distort the character of correlation between the
investigated variables. This is of major importance in case of, e.g. forecasting
on the base of the estimated models.

The correlogram of two-dimensional sample may present different con-
figurations of points on the surface. That is why it is reasonable to identify the
types of homogeneity in two-dimensional space depending on what compact
figure we analyse. As a consequence we identify (JAJUGA 1993):

– ellipsoidal homogenous sets when the set analysed as a set of points in
two-dimensional space forms a compact figure similar in shape to the ellipse,

– sets homogenous in the sense of linear regression, if the set analysed as
a set of points in two-dimensional space creates within it a compact figure with
the shape that allows its approximation by means of linear regression,

– homogenous sets that are none of the above types.
As concerns the ellipsoid homogeneity certain proposals are presented in

the work by JAJUGA (1987).
The notion of homogeneity is very important in statistics but unfortunately

underappreciated and used in imprecise way by many researchers. It should be
highlighted that homogeneity of the set of observations is the condition
necessary for usefulness of many statistical methods, including the methods of
statistical multidimensional analysis. Homogeneity of the set of observations is
linked to closely the notion of the distance of points in two-dimensional sample.
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If the set is homogenous the distances of observations from a certain character-
istic are small. Individual values in the sample with high values of that
distance may be treated as untypical.

The untypical character may appear in:
– marginal distributions,
– joint distribution.
The following types of untypicalness of two-dimensional sample can be

identified (WAGNER et al. 1997):
– Linear type with points detached in the direction of the OY axis (Fig. 1a)
They are characterised by the following properties:
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Fig. 1. Linear type with detached points: in the OY direction (a), in the OX direction (b), in the OX and
OY direction (c), in geometrical sense (d)

Source: based on WAGNER et al. 1997
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– Linear type with points detached in the direction of the OX axis (Fig. 1b)
with the properties:

(w1) min P2
x – max P1

x >> 0,
(w2) śr P2

x – śr P1
x >> 0,

(w3) med P2
x – med P1

x >> 0,
where P1

x and P2
x are projections of two-dimensional sample with the

population of n on the OX axis, to which populations n1
x = # P1
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x
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the symbol >> means “much larger than”.
– Linear type with points detached in the direction of the OX and OY axes

characterised by the following properties (Fig. 1c):
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– Linear type with points detached in the geometric sense (fig. 1d)
Existence of separate concentrations P1 and P2 such that P = P1 ∪ P2, but

without separation of concentrations for samples Px and Py is assumed. The
following conditions are also satisfied:

(w1) ∧ {xi ∈ 〈min P1
x, max P1

x〉},
xi∈P2

(w2) ∧ {yi ∈ 〈min P1
y, max P1

y〉}.
yi∈P2

The measure of detachment of the set P2 from the nucleus P1 of two-
dimensional sample is expressed by the geometrical distance of point (x0, y0) ∈ P2

from the regression line ŷ = b0 + b1x estimated on the base of the data

contained in sample P1 with the form where d =
⎟ b̂1x0 + b̂0 – y0⎟

≥ d0, where d0
√b̂2

1 + 1
represents the distance set arbitrarily.

Also the residues from the estimated linear regression function are used for
detection of untypical observations (PAWEŁEK and ZELIAŚ 1996). In the theory
of linear regression, next to the typical observations also observations that are:
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– untypical (Fig. 2a),
– influential (Fig. 2b),
– distant from the other observations (Fig. 2c)
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Fig. 2. Observations typical and untypical in relation to the linear regression (a), typical observations
and influential observation (b), typical observations and observation distant from the other

observations (c)
Source: based on PAWEŁEK and ZELIAŚ 1996.

Standardised residues can be used for determination of untypical observa-
tions in linear regression

ẽi =
ei , 1,2,..., n (1)
Se

where
ẽi – standardised residue for observation i,
ei – residue i of regression,
n – number of observations,
Se – standard deviation of the regression residue determined according to the

formula

Se = √ (2)

n

Σe2
i

i=1

n – k

where k is the number of estimated parameters.

Method for determination of untypical and influential
observations in linear regression

Let P2
n = {xa, x2,..., xn} be a system of observable vectors expressing the two-

dimensional sample with population n originating from a certain two-dimen-
sional distribution defined by the distribution function F2 and let θ ∈ R2

represent a certain point from the real space R2. In particular, it may belong
to the system of points from sample P2

n. It is assumed that at least
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h = [n/2] + 1 observations from sample P2
n are not positioned on any straight

line. If no more than two observations belong to any straight line then sample
P2

n is called the generally positive set of points according to the nomenclature
introduced by DONOHO and GASKO (1992). The criterion for determination of
the Mahalanobis depth measure in case of two-dimensional case assumes the
following form:

The function

Mzan2 (θ; P2
n) = [1 + Q(θ, P2

n)]–1 (3)

where Q(θ,P2
n) = (θ1 – x̄1)2 s11 + 2(θ1 – x̄1)(θ2 – x̄2) s12 + (θ2 – x̄2)2 s22,

while
n n

θ = [ ], x̄ = [ ], x̄ =
1 Σ xj, S =

1 Σ(xj – x̄)(xj – x̄)T, S–1 = [ ],n j=1 n – 1 i=1

θ1 x̄1 s11 s12

θ2 x̄2 s21 s22

we call the Mahalanobis depth measure Mzan2 for point θ in sample P2
n.

In the mathematical sense the depth measure Mzan2 obtained according to
the formula (3) is based on the distance between the point of the space R2 and
the vector of averages x̄ according to metrics determined by the inverse
S matrix. It should be pointed out that for determination of the Mahalanobis
distance in case when matrix S is not positively defined the so-called generalis-
ed Mahalanobis distance can be determined (see, e.g. BARTKOWIAK 1988).
Other criteria for determination of the measures of depth of the observation in
a sample are presented, among others, in the works by WAGNER and
KOBYLIŃSKA (2000, 2002).

The algorithm for determination of untypical observations in linear re-
gression using the measure of depth of the observation in the sample will be
proposed. It involves the following steps:

Step 1. We estimate the linear regression equation for the values of
analysed variables observed in the sample. The linear regression model of y in
relation to x is represented by the equation

ŷ = a1x +a0

where:
ŷ – theoretical values of the regression function ŷ = f(x) corresponding to

the given level of performance of variable X,
a0, a1 – estimates of the parameters of regression function Y to X, where a1 is

the estimate of the linear regression coefficient of variable Y in
relation to X, a0 – the estimate of the free expression.
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Step 2. Determination of the values of standardised residues ẽi according to
formula 1,

Step 3. Determination of the Mahalanobis depth measure Mzan2 (x1, P2
n) of

observations in two-dimensional sample according to formula 3,
Step 4. Each observation xi of the two-dimensional sample is represented

by the vector [Mzan2 (xi, P2
n); ẽi]. For the purpose of determining untypical

and influential observations in linear regression we conduct a review of
observations P2

n relative to the determined values of the depth measures and
the standardised deviations. Observations represented by the lowest values
of the depth measure and relatively high or low values of the standardised
residues can be considered untypical in relation to the estimated linear
regression. Observations represented by the lowest depth measures and the
values of standardised residues close to zero can be considered distant from
the others.

Numeric example. The two-dimensional sample P2
34 is the set of 34

pairs. On the correlogram (Fig. 3) significant concentration of observations in
the area of low and mean values of both variables and presence of untypical
observations can be noticed. The Pearson’s linear correlation coefficient
value is r = 0,303. This does not indicate strong correlation of the analysed
variables.
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Fig. 3. Correlogram of the two-dimensional sample
Source: own work.

Table 1, next to the values of observations X and Y, presents values of
depth measures and the standardised residues computed for them. Vectors
[Mzan2 (xi, P2

n); ẽi] were organised according to the values of Mahalanobis
depth measures for observations in two-dimensional sample. Considering the
values of standardised residues and depth measures it can be noticed that
observations 23, 34 and 27 are represented by the lowest depth measure values
and relatively high values of standardised residues. They can be considered
untypical in relation to the linear regression. The low value of the depth
measure and relatively low value of the standardised residues correspond to
observation 33. It can be considered influential.
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Table 1
Values of observations in two-dimensional sample, values of depth measures and standardised

residues

Observations of the
two-dimensional sample

and values of standardised
residues organised

according to the values
of the depth measure

Observations of the
two-dimensional sample

and values of standardised
residues organised

according to the values
of the depth measure

Value of observation Value of observation
of the two-dimensional of the two-dimensional

sample sample

no of no of no of no of
obser- X Y obser- X Y obser- Mzan2 obser- Mzan2

vations vations vations vations

standard standard
residues residues

1 0.06 1.28 18 0.45 0.39 33 0.068 0.375 4 0.495 -0.524

2 0.1 0.65 19 0.56 0.9 23 0.077 3.367 15 0.519 0.101

3 0.1 0.4 20 0.56 1.69 34 0.082 -2.161 8 0.564 -0.402

4 0.17 0.6 21 0.57 1.74 27 0.151 2.296 5 0.573 -0.217

5 0.18 0.86 22 0.57 1.5 32 0.334 -0.124 13 0.593 0.665

6 0.2 1.66 23 0.6 4.2 17 0.383 -1.18 24 0.604 0.785

7 0.21 0.55 24 0.6 2.1 25 0.397 0.703 30 0.618 0.547

8 0.21 0.74 25 1.12 2.56 3 0.404 -0.683 10 0.688 -0.33

9 0.22 0.45 26 0.63 1.16 18 0.407 -1.131 19 0.692 -0.641

10 0.31 0.9 27 0.65 3.38 1 0.425 0.449 11 0.724 0.248

11 0.32 1.38 28 0.68 0.67 31 0.432 0.174 12 0.793 -0.158

12 0.36 1.09 29 0.76 1.87 28 0.446 -1.073 14 0.81 0.186

13 0.37 1.77 30 0.89 2.2 6 0.451 0.742 29 0.844 0.303

14 0.38 1.39 31 1.19 2.2 9 0.454 -0.771 26 0.848 -0.408

15 1.1 2.05 32 1.33 2.1 2 0.47 -0.376 21 0.863 0.38

16 0.42 0.53 33 2.5 3.69 16 0.491 -0.922 20 0.889 0.331

17 0.42 0.32 34 1.89 1.01 7 0.492 -0.636 22 0.987 0.084

Source: own work based on the conventional data.

Tables 2 and 3 present the results of the linear regression equation
estimation. The linear regression equation was estimated for all 34 observa-
tions of P2

n (Tab. 2) and after elimination of untypical observations (Tab. 3).
The determination coefficient is 0,303 and 0,662 respectively. It is significantly
higher for the estimation after elimination of observations 23, 34 and 27.

Table 2
Estimations of regression equation parameters for 34 observations in two-dimensional sample

a0 ta0
a1 ta1

R2

0.854 (0.216) 3.954 1.012 (0.272) 3.721 0.303

Source: own work.
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Table 3
Estimations of regression equation parameters for 31 observations in two-dimensional sample

a0 ta0
a1 ta1

R2

0.601 (0.128) 4.695 1.300 (0.172) 7.558 0.662

Source: own work.

Conclusion

The paper discusses the types of untypical observations in two-dimensional
sample and proposes a method for elimination of untypical observations using
the measure of depth of the observation in the sample. The considerations
presented lead to the conclusion that the problem of appearance of untypical
observations is a major limitation encountered during estimation of statistical
population parameters. Detecting them is the first stage followed by elimin-
ation of them and application of the appropriate data analysis method.

In the STATISTICA package many tools (statistics and graphs) exist that
facilitate detection of diverging observations. For that purpose the model
residues are used. Next to the observed values, the values of the residue and
their standardised values we find numerous statistics intended for residue
analysis. The Mahalanobis distance and Cook distance are popular and
frequently applied.

The presented paper presents the usefulness of measures of depth of the
observations in the sample for detecting and elimination of untypical observa-
tions in linear regression. Elimination of those observations improves match-
ing of linear regression to the empirical data. Using the values of the measures
of depth in the sample and considering at the same time the values of
standardised residues (according to formula 1) the observations that are
distant from the other ones can be determined.

Translated by JERZY GOZDEK

Accepted for print 24.08.2011
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