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In 1966 we call to mind not only the 250th anniversary of Leibniz’s 
death but, a t the same time, the tercentary of his Dissertatio de arte 
combinatoria, a work in which this young scientist, then aged 20, made 
his debut and, at the same time, revealed the significant roots of his 
genius. W hat we call “combinatorics” is a mathematical discipline, 
requiring for its operation none of the means surpassing the scope of 
antique mathematical knowledge. Even so, it is characteristic tha t it 
was not until the Grand Siecle of the Baroque, tha t combinatorics 
which demands no more than the four fundamental rules of arithmetic, 
was conceived as a new mathematical discipline. In the framework 
of Aristotle’s antique logic it had been possible to picture operations 
of thinking by operations of calculations; however, antique thinking 
was unable to the final step in abstraction, and to admit logical 
relations not only between complete logical subjects but between 
relations as well by calculating with relations in the same manner 
as with numerals. The arithmetic of antiquity was not yet able to 
pass on to the arithm etic of relations, that is, to what is called 
combinatorics. In his 1666 dissertation Leibniz even pointed out the 
logical superiority of relations over relating subjects; this dissertation 
calls attention not only to his calculating machines of a la ter date but, 
likewise, to the notion of the logical operator in general. And it does 
not seem to be a haphazard occurrence tha t neither the followers of the 
numeral system nor practical scientists among the mathematicians 
invented calculating machines for the use of merchants, but this was 
rather done by the philosophers and logicians like Leibniz and Pascal, 
by the use of their Ars combinandi. Statistics also is an achievement 
of the 17th century; this branch of science, called Ars conjectandi, was 
developed by Jakob Bernoulli, also a pure mathematician.
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Fig. 1. 3rd and 4th logical Figure of Raymond Lullus 
(from a MS of the 14th century)

Again it might not be by accident, tha t Pascal’s machine was inferior 
to tha t of Leibniz, because it was unsuitable for carrying out the last 
of the four fundam ental rules, the division; Pascal’s Theorie des com- 
binaisons still lacked the notion of an operator which, even when 
lacking any concrete contents, would maintain its logical existence.
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Leibniz was probably the one thinker of the Baroque who, while 
most consciously adhering to traditional thinking, aimed a t converting, 
science from logically static subjects and predicates of its scholastic 
past into a science of functions of variable values of the positivistic 
future, w ithout philosophical obstacles. His 1666 writing still bore 
predominantly scholastic features: quoting his predecessors he attem pted 
to automatise thinking and, in this particular case, calculating. Not 
only did Leibniz point to Neper’s (Napier’s) rhabdology dating from 
1617, by which this Scotch peer, known to us as the founder of 
logarithmic calculus by means of his “rods” or “bones” (mechanical 
devices for carrying out arithm etical operations), was the first to 
supersede the abacus by automatizing calculations. Leibniz also dedicated 
a num ber of chapters on logic to the legendary Catalonian monk 
Ramon y Lull, who as early as in the 13 th century attem pted to au to 
matise logical operations by means of his rotating discs. A manuscript 
found by Couturat among the 80,000 papers of the heritage left by 
Leibniz mentions: “Raymundus Lullus also dabbled in mathematics; 
he hit upon the notion of the ‘science of combinations.’ This Lullus’ 
a r t would undoubtedly be somethink beautiful, were it not tha t the 
fundamental expressions he uses like: goodness, greatness, duration, 
force, wisdom, will, virtue, fame, are vague and merely suitable for 
speaking of tru th , not for detecting it.”

Leibniz by no means passes censure on Lullus’ intention as an 
attem pt of automatizing processes of thinking by machinery; however, 
he merely recognizes Lullus’ “Figures” to be inadequate as logical 
apparatus. For instance, in his third Figure Lullus depicts a model 
intended to illustrate, how the 9 absolute predicates are to be combined 
w ith the 9 relative-predicates of his logical Alphabetum, to form judg
ments, and how—in Lullus’ belief—one passes from the general to 
the specific. However, first one has to know, by which intermediate 
notion the predicates of these judgments are to be combined with 
their subjects. This Lullus tries to achieve by mechanizing, in his 
fourth Figure, the arrangem ent of his 9 absolute and 9 relative pre
dicates in such manner, that by rotating the two inner circular discs 
there can pass along each of the 9 subdivisions of the outer disc the 
9 subdivisions of the inner disc, and tha t the subdivisions of the in ter
mediate disc can operate as interm ediate notions of judgments.

The Ars vnagna of Lullus’ a rt became not only the watchword of 
the Rinascimento humanists; it continued to be considered the Nuova 
Scienza in general—until the time when it suffered its baroque dis
figurem ents in Rosenkreuz’s Rota M undi which was believed to contain 
everything conceivable by science.

However, it happened to be Leibniz who, still in school, confounded 
his teachers by the assertion that, alongside of the scholastic table of
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predicaments by means of which concepts can be composed into true 
judgments, there must also exist a corresponding table of predica- 
mental judgments by means of which judgments can be composed into 
true conclusions—so tha t there m ust be in existence a thought alphabet 
of predicaments, by the use of which all kinds of tru ths can be ex
pressed.

Fig. 2. The original of Leibniz’s calculating machine is held By the Lower Saxonian 
Provincial Library at Hannover (phot. L. v. Mackensen, 1966)

In youthful Leibniz this concept, put forth by Lullus, flourished 
w ith a significant root: to wit, as the concept of a logical automatism, 
which would exceed the previous range of definitions and advance 
algorithmically to new stages. From the time of Al-Khwarizml’s 9th 
century textbook on algebra, the a rt of calculating is called algorithm, 
because the Latin translators muddled the incipit of the Arabic name 
in Dixit Algorizmi ... However, by several nominalists this term suf
fered in the 14th century a characteristic variation: Nicolas d’Oresme’s 
book Algorismus proportionum  already introduced fractional exponents 
of roots, so that this abstract formulation of root extraction is older 
than the radical sign of the Cossists. Even so, d’Oresme’s formulation 
is derived from a typically algorithmic process: the potentials which 
originally had been defined exclusively for integer exponents, now
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became new inverse values, that is, radicands, in consequence of a 
m erely formal transition from numbers to fractions.

The technique of an algorithmic creation of new mathematical forms 
developed in Leibniz to a high degree of artistry ; because the Ars 
Lulliana is m eant to be less a logistic Ars demonstrandi than rather 
a scientific Ars inveniendi. I t should be remembered, tha t in 1637 
Descartes had by his Methode nouvelle subjected geometry to algebraic 
calculation; in 1670 Leibniz, who la ter was to create the notion of 
“function”, already demanded in his Physica nova—a work devoted 
more definitely to the fu ture than his baroque 1666 dissertation:—that 
Galilei’s dynamics should be subjected to Descartes’ algebraic calcu
lations. This la tte r scientist had steadily declined to understand Galilei’s 
dynamics; the reason was, tha t the notion of a variable transgresses 
the barrier of Clare et distincte of the Cartesian finite coordinate

Fig. 3. Leibniz’s watch as pictured in the Journal des 
Savants

system. On the contrary, Leibniz demanded a calculation tha t would 
also deal with variables as well as with finite values—a way of thin
king preposterous to antiquity.

However, Leibniz did not find his new solution within the theorems 
of Galilei’s dynamics, where the problem of velocity is explained as the 
tangential lim it position of the secant between two points infinitely 
close to each other on the curve of velocity, as a year previously 
Newton had discovered by his fluxion theory. It so happened, that 
Leibniz’s intellect had to be sparked at the point when the formally 
logical predominance of a constant relation over the infinitely disap
pearing relationed subjects became more clearly visible than in the 
problem of tangents. Leibniz arrived a t his success in 1673 when he 
was shown, by Huyghens, the writings left by Pascal: drawing a t the 
tangent of a circle from two adjoining points the parallels to the axes 
of the circle, the small triangle created at the tangent m ust always
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equal the larger triangle formed by the radius, the ordinate and the 
subnormal. Even so, Leibniz perceived something “que l’auteur Pascal 
n ’avait pas vu”: that this axiom is valid for all curves, not only for 
the circle, and that from point to point of the curve this triangle 
changes, so that it is possible from these changes to define the shape 
of the curve; and that, for this reason, this triangle is justly called 
the Triangulum characteristicum.

Because therefore the tangential triangle, be its sides as small as 
may be, always resembles the large triangle—this does not apply to 
Galilei’s tangents, though—Leibniz, the champion of Ars combinatoria, 
takes the im portant step: in view of the logical principle of a relation 
being constant, he continues to w rite the lim it value of this constant 
relation even then as quotient, when the logical material subjects of 
this relation, i.e. the sides of the triangle, tu rn  into zero. And while, 
from the Cartesian point of view, these values are no extensiva, thus

Fig. 4. The Triangulum characteristicum  mentioned by Galilei and Leibniz

without meaning, Leibniz revives them as inextensive, in other words, 
intensive values on the basis of the relative trend of his thinking. 
Thus, for example, to him Galilei’s inextensive yet intensive indivisible 

dsof velocity is, as — a true quotient of the infinitely small distance ds
to the infinitely small time dt. As soon as the two injinitesimalia, the 
logical material of this relation, tu rn  into zero, in the scholastic unity



Leibniz’s Interpretation of Lu llus ’ A rt 177

of Forma and Materia (i. e., subjectum) the form becomes infinitely 
dense, creating in this manner a new subject: the derivative.

More than Newton, Leibniz adhered to the Cartesian-Lullian trad i
tion, but less than Newton to the tradition of the Nominalist school 
of Oxford and Paris; in late medieval times these schools implicitly 
already made use of the concept of a function in  their graphical presen
tation of nature’s law—a procedure earlier anticipated by Guido d ’Arez- 
zo with his scale of tones. There exist several “codices” dated from 
the 12th and 14th centuries, where already the ecliptical latitudes of 
planets were shown graphically as functions of lengths, that is, of time. 
It does not seem by haphazard, tha t this probably oldest relation, 
known already, though empirically only, to the Babylonians—because 
the Greeks did not attem pt to express this relation by a variety  of 
geometrical models—became the basis for graphically indicating natural 
processes during the Middle Ages; this is evident from the fact, that 
in Mensurae formarum  the la ter Cartesian ordinates were called Lati- 
tudines and the later Cartesian abscissae Longitudines. Leibniz chose 
to define his concept of functions within the system of Aristotle’s 
scholastics. And it is only by the application of the Lullian algorithm 
to the concept of functions, tha t the century’s yearning for the Scienza 
Nuova was fulfilled. Leibniz asserted: “Functio est continuatio omnium 
variationum form arum .” In the late Scholastic sense of the word, 
Galilei called velocity Forma motus. Therefore, by continuity in time 
of the change of all forms of velocity, Leibniz solved the process des
cribed by the function. In this m anner physics—a special case of m eta
physics—denotes the distance travelled as the product of process:

s = J udt =

However, for Leibniz the differential quotient is a true quotient—this 
is the proper Metaphysique du calcul infinitesimal—so that dt can be 
cut out and thus the logical, and the more so, the arithmetic identity

s =  J'ds results.
This logically formal identity was apt to become the source of the 

whole material essence of physics. Because now there were only to be 
established the differential laws—a m atter to be assigned to the physi
cists; afterwards it was the m athematician’s task to solve them. And 
should he be unable to do the integrating operations, computing machi
nes would attend to this with any desired accuracy. And this indeed 
happened to be fundamental task of Newton’s physics: in practical use, 
Newton’s calculus of fluxions operated by the development of func
tions into infinite sequences. Here came to light the fundam ental dif
ference in the invention of the calculus between Newton and Leibniz. 
The notorious controversy on priority between these two scientists was

12 — O rg a n o n , N r  4/67
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essentially a contest as to the correct notation of the infinitesimal 
calculus. Both of them combined the attitudes adopted by Descartes 
and by Leibniz, and this synthesis was bound to result automatically 
in the infinitesimal calculus, because just as much as Descartes re
pudiated Galilei’s continuous variables, Galilei—being a Rinascimento 
Italian—shrinked from an algebraization of geometry, which already 
had been condemned by Plato. And yet, while Newton accomplished 
this synthesis as a physicist, Leibniz did it as the algorithmian. In the 
la tte r’s work the fundam ental theorem of inverse calculus achieved its 
full expression in its formal perfection: if a function is to represent 
the “continuatio variationum functionis f  =  Jdf,” this should operati
vely be w ritten:

1 =  fd .
By introducing this relation Leibniz has completely shattered the 
framework of antique mathematics; because now one can write d~ 1 =  /  
and algorithmically develop the full sequence

........ d—3, d - 2, d“ 1, d°, d, d2, d3, .............

This sequence of higher differentials and integrals impressed the 
Cartesians m erely as a metaphysical monstrosity: how to imagine the 
existence of an infinite sequence of values, all mutually infinitely 
large, or infinitely small?

Even more so: while the Newtonians discovered in the problem of 
interpolation the Taylor series as an approximate polynomial of higher 
order, Leibniz deduced the Taylor series from his /  =  d—1 formula, 
by using this formula for the n-th product-differentiation dn (uo) =  
=  (du +  do)n.

Admittedly the n-th  differential of a product can be w ritten symbolic
ally as the binomial development for the sum of the first differential. 
Therefore, one can consider Jf dx  to be the — 1 derivative of the 
product of f  and dr—meaning that (df +  d2x )—1 must be symbolically 
developed into an infinite binomial sequence. This then was indeed, 
as Johann Bemouilli enthusiastically claimed, the “series universalis- 
sima, quae omnes integrationes exprim it,” tha t is: J /  dx. To be sure, 
here the coefficients, under development towards higher derivations, 
were still functions; however—as pointed out by Pringsheim—this 
Leibniz-Bernouilli sequence can be transformed into the Taylor series. 
The development of the Taylor series m aterially completed the full 
scope of the theory of functions, because it also embraced the complex 
and, from a historical point of view, even became the foundation of the 
universal theory of functions. By this achievement Leibniz the 
algorithmian attained his supreme trium ph: with a minimum of ma
thematical form he expressed a maximum of mathematical contents.
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Fig. 5. Leibniz’s letter to J. I. Bernoulli (dated Dec. 16, 1694) 
containing the “Taylor series”

I t  is characteristic, that until into the 19th century Leibniz was looked 
upon as a plagiarist of Newton, reputed—at best—to have merely 
invented a more suitable form of notation. Due to this, Leibniz’s prestige 
had greatly suffered among the professional philosophers. However,.
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how were these to understand, tha t Leibniz was one of the exceptionally 
few who, like Pythagoras and Plato, succeeded in inventing a whole 
esoteric philosophy in order to describe their mathematics for which, 
in their respective time, the vocabulary, later on in common use, was 
still lacking. Here it seems significant that the only man, who made 
a stand against this official secular condemnation voiced by academies 
and universities, was the chief ideologist of the Esprit positif de l’Êcole 
Polytechnique in Paris. In his Cours de Philosophie positive Auguste 
Comte asserts: “Des exemples de nature aussi divers sont plus que 
suffisants pour faire nettem ent comprendre en général l’immense portée 
de la conception fondamentale de l’analyse transcendante, telle que 
Leibniz l’a formée (and here we feel tempted to add: “et que l’École 
Bâloise l’a développée”), et qui constitue sans aucune doute la plus 
haute pensée à laquelle l’esprit humain se soit jamais élevé jusqu’à 
présent.”


