


ORGANON 15 PROBLÊMES GENERAUX 

Erkka Maula (Finland) 

FROM TIME TO PLACE: THE PARADIGM CASE 

The world-order in philosophical cosmology can be founded upon time as well 
as .space. Perhaps the most fundamental question pertaining to any articulated world-
view concerns, accordingly, their ontological and epistemological priority. Is the 
basic layer of notions characterized by temporal or by spatial concepts? Does a 
world-view in its development show tendencies toward the predominance of one 
set of concepts rather than the other? At the stage of its relative maturity, when 
the qualitative and comparative phases have paved the way for the formation 
of quantitative concepts: Which are considered more fundamental, measurements 
of time or measurements of space? In the comparative phase: Is the geometry of 
the world a geometry of motion or a geometry of timeless order? 

In the history of our own scientific world-view, there seems to be discernible 
an oscillation between time-oriented and space-oriented concept formation.1 In the 
dawn, when the first mathematical systems of astronomy and geography appear, 
shortly before Euclid's synthesis of the axiomatic thought, there were attempts 
at a geometry of motion. They are due to Archytas of Tarentum and Eudoxus of 
Cnidus, foreshadowed by Hippias of Elis and the Pythagoreans, who tend to intro-
duce temporal concepts into geometry. Their most eloquent adversary is Plato, 
and after him the two alternative streams are often called the Heraclitean and the 
Parmenidean world-views. But also such later and far more articulated distinctions 
as those between the statical and dynamic cosmologies, or between the formalist 
and intuitionist philosophies of mathematics, can be traced down to the original 
Greek dichotomy, although additional concepts entangle the picture. And doctrines 
such as the theory of the klimata, the kinematics of the 14th-century Schoolmen, 
Thomism, Evolutionism, the dialectics of nature, and Vitalism, could hardly be 
adequately discussed without a reference to the pivotal status of temporal concepts. 

1 A concise summary appears in G. J. Whitrow's Natural Philosophy of Time, London and Edin-
burgh 1961 (esp. Chapter III, Mathematical time). 
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It looms also behind the emphasis on geometrical construction in the history of 
analysis and synthesis, and behind the heuristical ideas in the development of cal-
culus2, although Cauchy, Dedekind, Cantor and Weierstrass adhered to the formaiist 
view. The necessary precision in the concept formation was gained by abandoning 
the predominance of temporal concepts. 

This paper discusses the paradigm case of such a predominance which I shall 
associate with the rise of Greek mathematical astronomy and geography, i.e. with 
the first mathematical analyses of the motion of the Sun and other celestial bodies.3 

The point of special emphasis is Eudoxus' thought which assumes a synthetic mani-
festation in his main instrument, the arachne. This view-point is not adopted merely 
in order to gain a better understanding of the beginnings of our world-view, of Zeno's 
paradoxes and Plato's criticism of the contemporary geometry. It is adopted because 
it sheds light also on the end of a long tradition. For paradoxical though it may 
sound, Eudoxus' contribution to the development of modern analysis was found 
fresh after its dormancy of two millennia by Dedekind and Weierstrass4, who witness 
the elimination of temporal concepts from the terminology of calculus. 

THE CIRCLE AND THE LINE 

Approaching the interrelation of time and place from the direction of temporal 
notations, we meet with the dilemma : Should we begin with the concept of linear 
time, or with cyclic time? 

There are two contexts where cyclic and linear time both seem to occur, and they 
suggest that these two concepts of time are interrelated in the same way as the cir-
cumference and the diameter of a circle. 

The first context is the determination of the length of day and night, at the summer 

2 One must only recall Archimedes' work on spirals and his methodological fragment, Napier's 
invention of logarithms, Galileo's Protophysik, Hamilton's discovery of quaternions, Kronecker's 
criticism of Cantor, or Newton's invention of the calculus of fluxions. 

3 For our purposes Greek mathematical astronomy and geography need not be discussed 
separately. However, since we are going to discuss the very early stages of their development, it 
might be more appropriate to speak about time and place than about time and space. For their 
connection in the Greek paradigm see E. Maula, Ancient Shadows and Hours, Annales Universitatis 
Turkuensis, Ser. B, Tom. 126, Turku 1973; E. Maula, E. Kasanen, P. Kasanen, J. Mattila, Meridian 
Measurements from the Nile to the River Tornio 1736—1737, The River Valley as a Focus for Inter-
disciplinary Research (eds. E. Maula and E. Erkinaro) Oulu 1980; E. Maula, E. and P. Kasanen, 
J. Mattila, A. Szabô, Man's Orientation in Time and Place : The Discovery of the Relation between 
Temporal and Geographical Measurement, Proceedings of the XVth International Congress of the 
History of Science, Edinburgh 1977; E. Maula, Man's Self-orientation in Time and Place, Proceedings 
of the First International Week on Philosophy of Greek Culture, September 19-25, 1977, Chios, 
Greece = Diotima 1979. 

4 See Sir Thomas L. Heath, A History of Creek Mathematics I-H, Oxford 1921 (esp. I, pp. 
325-327, 385). It is noteworthy that Eudoxus' general theory of proportion is applicable to incom-
mensurable as well as to commensurable quantities, and "equally applicable to geometry, arithme-
tic, music and all mathematical science". There is a marked tendency in Eudoxus to develop general 
theorems—in contradistinction to theories pertaining to the departmental division of sciences, 
as we would call them. 
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and winter solstices and at the equinoxes, by means of the r a t i o s of t he d a y - a r c 
and n i g h t - a r c (of the tropical circles of the celestial sphere) on the one hand, 
and by means of the corresponding r a t i o s of p a r t s of t he d i a m e t e r s of these 
tropical circles on the other hand. It is not known when the measurements of the 
day-length by means of the klepsydra and the gnomon, and by means of observa-
tions of the night sky, first became interpreted in terms of the celestial sphere. Pro-
bably it was not later than about 400 B.C. when the hypothesis of the sphericity of 
the Earth was already widespread. At any event, from Hipparchus we gather that 
Eudoxus (c. 390-337 B.C.) used such expressions (e. g. Hipp, in Arat. et Eud. I, 2 
22; I, 3, 9). 

They are customarily explained as r a t i o s of a rcs , divided by the horizontal, 
plane at the solstices at noon. However, in this interpretation it is not easy to connect 
the ratios (5:3 and 12:7) to latitudes known from Eudoxus' biographical tradition. 
1 have suggested (in Ancient Shadows and Hours) that they could be interpreted as 
ratios of the corresponding p a r t s of the d i a m e t e r of the tropical circle instead. 
This interpretation will connect them, using the value for the obliquity of the ecliptic 
obtained in my reconstruction of Eudoxus' cosmology5, with the latitudes of Ra-
kotis (Alexandria) and the ruins of Babylon with a surprising accuracy, the error 
being in the region of 16'. After the reconstruction of Eudoxus' main instrument, 
the arachne6, I now think that the ratio 5:3 alone pertains to the diameter, while 
the ratio 12:7 pertains to the tropical circle. This is a conjecture based on the length 
of the radius of the tropical circle. It is 12 units, the radius of the circular plate, 
enoptron, of the instrument being 13 such units. For the Pythagorean triangle with 
sides 13, 12, 5 determines Eudoxus' value for the obliquity of the ecliptic.7 

On Fig. 1 the arachne is erected at the latitude of Rakotis. The ratio 5 : 3 appears 
as the ratio of the parts of the diameter of the tropical circle (SQ : QS') and also 
as the ratio of the gnomon to its equinoctial shadow (AO : AC = OP' : QP')> 
which is equivalent to the cotangent of the latitude (<p). 

The interrelation of the circumference and the diameter of a circle are attested 
already in the Papyrus Rhind, where the value -K — 256 : 81 = 3.160 is given 
(in 1700 B.C. probably referring to much earlier times). In the diameter of the tro-
pical circle of the arachne r — 12, and the two nearest whole number lengths for 

5 E. Maula, Studies in Eudoxus' Homocentric Spheres, Commentationes Humanarum Littera-
rum, Vol. 50, Helsinki 1974, and The Constants of Nature. A Study in the Early History of Natural 
Law, "Philosophia" IV, Athens 1974. 

6 E. Maula, Points of Contact between Physics and Philosophy in their Early History. The geo-
metrical Spider, On the Foundations of Physics (eds. P. Lahti and A. Siitonen), Report Series in 
Theoretical Physics, Turku University, Turku 1975, and The Spider in the Sphere. Eudoxus' Arachne, 
"Philosophia" V/VI, Athens 1975/6. 

7 Note that the acute angle obtained (a in the attached figure) is about 22°37' and thus some-
what smaller than the true value in Eudoxus' day, c —. 23°44', but this is in fact a strong argument 
on behalf of the reconstruction, since it is known that Eudoxus postulated a (fictitious) deviation 
for the third sphere of the Sun, a deviation from his chosen obliquity of the ecliptic. Moreover, 
the same method which explains the periods and axial inclinations of all other planets in his system, 
explains even this solar deviation (I = 1°16'). 
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Fig. 1. The main circles and the Arachne in Rakotis: AO—gnomon, FP—polos, 
HH—plane of horizon, SS'—diameter of the summer tropic, WW'—diameter of the 

winter tropic, KP'Q = f—half the night arc, COA = QOP' = cp—latitude 

the rectification of the quadrant are c/4 = 18 and c/4 = 19. We thus obtain two 
approximations to 7t as c : d = 18 : 6 = 3 : 1 and c : d = 4 9 : 6 = 3.166... 

It must be remembered that in the first place these are ratios expressing the inter-
relation of cyc l i c a n d l i n e a r t i m e . While cyclic time is associated with stellar 
observations of the tropical circle, the arachne measures the day and night by means 
of the ratios on its diameter, and this can be associated with the concept of linear 
time. But simultaneously we have obtained two approximations to n. The full im-
portance of this discovery will be seen when we remember that the Earth, too, was 
assumed to be an example of a spherical body. This will connect the meridian measure-
ments to the same set of problems.8 

In order to obtain further approximations to iz we start f rom the ratios 3 : 1 
and 19 : 6 which suggest an algorithm. This algorithm, which closely resembles to 
the-Pythagorean approximations to surds, is 

where ci:di & n, when i = 1, 2, . . . , 6). 
The results may be given in Table I. 
It will be seen that correct lower and upper approximations are obtained alter-

natingly. 
The oldest recorded meridian length, c — 400 000 stades (reported by Aristotle, 

8 An interrelation of temporal and geographical measurements, especially Eratosthenes', 
is argued for also by Prof. Harry Bowsher in his paper Cultural Influences on the Evolution of Ancient 
Weights and Measures, The River Valley as a Focus of Interdisciplinary Research. It is a computer 
study in ancient metrology based on extensive data concerning ancient artifacts and monuments 
recently measured. 

(1) = 2di_2+di_l 

= 2ci_2
jrc,_1 C, 
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TABLE I 

c d c : d Meridian circle : diameter of the Earth Measure-
ment 

3 1 3 : 1 = = 3.0 = 300 000 : 100 000 = 240 000 : 80 000 = 180 000 : : 60 000 Dicaear-
chus? 

• Eudoxus 
/ (1)? 

19 6 19 : 6 = 3.166... = 253 270 : 80 000 = 190 000 : : 60 000 Posido-
nius, 
Ptolemy 
and fol-
lowers (1) 

- Eudoxus 
(2)? 

25 8 25 : 8 = = 3.125 = 250 000 : 80 000 Eratost-
henes (1) 

63 20 63 : 20 = 3.15 = 252 000 : 80 000 Eratost-
henes (2), 
Hippar-
chus 

113 36 113 : 36 = 3.1388.. . = 214 700 : 68 400 
239 76 239 : 76 = 3.1447.. . = 215 100 : 68 400 ss 240 000 : 76 000 Eudoxus? 

Posido-
nius? 

De caelo 298 a 9 ff), associated by Tannery (Recherches sur Vhistoire de Vastronomie 
ancienne, 110 f.) with Eudoxus. It does not ensue from our algorithm and may repre-
sent an isolated measurement not connected with the other problems indicated. 
In our interpretation, Eudoxus determined the latitudes of Rakotis (tan <p = 3 : 5, 
in several ancient sources) and Cnidus (tan 9 = 3 : 4 , reported by Hipparchus 
erroneously as the latitude of Athens and adjacent regions; 9 = 36°52', f rom a Py-
thagorean triangle with sides 3, 4, 5, however, pertains to Cnidus and the nearby 
Cos, while the true latitude of Athens is very nearly 38°). What is known about 
Eudoxus' observation of Canopus (a Carinae) and about the distance between Cnidus 
and Egypt (with which Cnidus had traditional contacts of commerce, not to mention 
Eudoxus' research voyage), rather suggests that he obtained, by means of his arachne, 
an arc of 1/60 of the meridian and a circumference of either 300 000 or 240 000 
stades.9 Furthermore, Eratosthenes' t w o reported measurements, as well as Posido-
nius' reported change from 240 000 to 180 000 stades become intelligible. They 

9 Eudoxus' paradigm for meridian measurement, which became canonical through the sub-
sequent periods up to Maupertuis' expedition to the River Tornio, Northern Finland, in 1736-1737, 
has been discussed in our paper Meridian Measurements from the Nile to the River Tornio 1736-1737 
mentioned above. In the arachne the magnitude of an angle is measured in terms of ratios of whole 
numbers, q : p = tan (a/2). If g: p = 1 : 19, then the whole angle a — 6°02' or very nearly 1/60 
of a circle. 

7 — O r g a n o n 15 
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represent different approximations to TC (and different lengths postulated for the 
radius of the Earth). 

It might be noted that Archimedes' estimates 3^ > tc > 3^ do not ensue 
from our algorithm. However, it is known that in his basically geometrical proce-
dure Archimedes first obtains an approximation 1351 : 780 > j / 3 > 265 : 153. 
This result has never been explained satisfactorily (cf. Heath, A History of Greek 
Mathematics). The intermediate step naturally affects the approximations to TC.

 X 

But we have been able to show10 that the approximations to j/3 can be obtained by 
another algorithm, viz. 
(2) a, = o , — • 

dt = 3 a , ! 
(where di\ai ]/3 when ax = dt — 1), 
which itself is a generalization of the best known Pythagorean algorithm yielding 
approximations to j/2, 
(3) a, = a ^ + d ^ i 

_ d, = 2+</,_! 

(where di : at j/2 when at = dt = 1). 
Hence not only an algorithmic method for the approximations has been establi-

shed, but even the known exception can be explained by means of such an algorithm. 
Moreover, also Eutocius' note on Apollonius obtaining a better approximation to TC 
than Archimedes becomes understandable. For the arithmetical mean from the 
two last approximations by (1) indeed is better than that from Archimedes' two 
estimates. Finally, if we make the coefficient in (1) one instead of two, the "classical" 
approximation (after Archimedes), TC = 22 : 7 will be obtained. It may be noted, 
though, that still in the Hellenistic period often TC = 3, a value which we meet 
also in the Hebrew Mishnat ha-Middot, being no doubt quite satisfactory for 
an architect.11 There is a great number of interesting philosophical implications 
from the apparently extensive use of similar algorithms. They are discussed in(/my 
paper "The First Beats of a Dynamic World-View", and their general import tends 
to support our main thesis about the imparity of time and place. But there are also 
some more immediate mathematical implications that are of the greatest interest 
just here. 

Before we leave this subject, it may be noted that there is also another context 
where the concepts of linear and cyclic time seem to occur side by side. That is 
the calendaric edifice of the luni-solar cycles. Our best sources about these cycles 
are Geminus' Isagoge and Censorinus' De die natali which profess to give a historical 

10 In a paper called "The First Beats of a Dynamic World-View" read at a symposium on the 
reconstruction of the arachne arranged at Leningrad State University in October, 1976, mimeo-
graphed. 

11 See my review on Prof. Lehti's paper on Mishnat ha-Middot, in Zentralblatt für Mathe-
matik, 291. 
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account of the development. This may be wrong, but at any event we learn that 
a whole number of lunar and solar rotations were supposed to occur either within 
an 8-year period (octaeteris, which Censorinus associates with Eudoxus): 99 lunar 
months are approximatively 8 years of 365^ days or 2922 days (Isagoge 8.34-5); 
or within a 16-year period (Isagoge 8.36-41); or within the Metonic 19-year period = 
= 235 months of which 7 intercalary months = 6940 days = 19x365^ days (Cen-
sorinus, De die natali 18.8); or within a 59-year period (which Censorinus associates 
with Harpalus, before Meton; De die natali 19.2) or 730 lunations = 21 557 days; 
or within a 76-year period = 940 months, of which 28 intercalary = 27 759 days = 
= 4x19x365^—1 days = 76x365^ days or the Callippic cycle (Isagoge 8.57 
-60) which Ptolemy used in the Syntaxis as an alternative; or within a 160-year 
period (presupposed in Eudoxus' octaetris', cf. Heath, Aristarchus, 293); or yet 
within Hipparchus' 304-year period (Ptolemy, Syntaxis III. 3). We do not know how 
the ancients conceived of these relations between the lunar and solar cycles (and 
the computations of days and intercalary, "full" and "hollow" months may be simply 
arithmetical), but it is hardly a coincidence that the whole number ratios of the 
diameters and the circumferences indicated in the table based on (1) are met even 
here. For all these luni-solar cycles seem to have based either on the approximation 
TC = 3.0 or on the approximation TC — 3.166... This will be seen when we draw 
the corresponding circles so that whole number lengths are obtained for the radius 
and circumference. It may be noted that even the 59-year period (of Harpalus?) 
could be illustrated basically in the same way, if the value TC = 239 : 76 is accepted. 
Hence all luni-solar periods can be accounted for. 

THE BEGINNING OF TRIGONOMETRICAL TABLES 

If the algorithm (1) is permissible, we have in the first table an illustration of 
a "theory-informed observation" and even of a "theory-informed experiment", 
long before the Islamic optics (where Sabra sees the beginning), before Galileo 
Galilei's Protophysik (where Mittelstrass might put the first occurrence), and before 
Newton's codification of modern physical thinking. Yet the immediate bearing of 
the algorithmic representation lies elsewhere. For it will give rise to an interrelation 
of parts of the diameter and parts of the circle, which is the problem solved also 
by the later Tables of Chords. Yet since arithmetical considerations give the impetus 
to the algorithms, it is clear that not geometrical but arithmetical methods must 
be applied. 

We consider first the rectifications based on the two first approximations to tc. 
A simple juxtaposition of ratios of line segments and .ratios of the corresponding 
arcs will carry us surprisingly far. We juxtapose ratios of the day- and night-arc 
(or rather their halves, y) : !;) with ratios of the corresponding parts of the diameter 
of the tropical circle (a : b), giving also the lenghts of day and night in equinoctial 

© 
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hours, the corresponding tangents of the latitudes (as in the arachne) equivalent to 
the ratios of the equinoctial shadows to the gnomon, and for better assurance the 
latitudes in degrees. Table II will gather these things together. 

TABLE II 

day: 
a -.b * : 5 ^ shortest n j g h t Shadow: ^ ^ , 

(lower) (upper) night ( a p p r . ) 8 n o m o n 

12 : 12 18 : 18 19 : 19 12h 12 : 12 0 : : 5 0° Equator 
13 : 11 19 : : 17 20 : 18 ] Jh22mn 12f : l l i 1 : 5 11°19' 
14 ; : 10 20 : : 16 21 : 17 10b43m n 13* : 1 0 f 2 : 5 21 °48' 
IS ; : 9 21 : : 15 22 : 16 10h04rnn 14 : 10 3 : 5 30°58' Rakotis (Alexandria) 
16 : : 8 22 : : 14 23 : 15 9h24mn 14» • n 4 : : 5 38°40' 
17 : : 7 23 : : 13 24 : 14 = 

12 : 7 

g h 4 3 m n 15J : 8 f 5 : : 5 45° Mid-Pontus? 

18 : : 6 24 : : 12 25 : 13 8 h 16 : 8 6 : : 5 50°12' N of Borysthenes 
19 : : 5 25 : 11 26 : 12 7 h 1 5 m n 7 : : 5 54°28' 

Here we have, then, a representation of the impar i ty of t ime and place. 
If we proceed equally with, say, two hours in the length of the longest day of the 
year, the first step will take us to Rakotis, and the second one to Olbia on the north 
of Borysthenes (Dnieper) whereas the distances along the meridian (shown by lati-
tudes) have become unequal. The values in italics are met in the literature and pro-
bably come from Eudoxus. 

Hence if we proceed from time parallel of 16 hours (that being the length of the 
longest day of the year at that parallel) southwards, towards the Equator, the surface 
distance along the meridian corresponding to each equal period will become greater, 
and vice versa. Conversely, if we proceed with steps of equal length along the meridian 
from the Equator northwards, the length of day-light will become longer in increas-
ing periods and vice versa. It is not a valid point that no actual motion is involved 
here. For take a measure like "a day's journey" or "a day's sailing", from sunrise to 
sunset, and we have the actual motion. Alternately, we can say that we are observ-
ing the Sun's spiral motion on the celestial sphere, a motion well known to Plato 
in his Timaeus. 

When this notion of the imparity of time and place is added to that of the ever 
increasing amount of real time and effort needed in calculating more and more 
accurate approximations using algorithms like (2) and (3) (discussed in "The First 
Beats of a Dynamic World-View"), we discern a pattern lending itself to several 
philosophical implications.12 Yet we need not be concerned with them here. Instead, 
we comment on the table just drawn. 

1 2 This pattern seems to underlie a dialectics of nature and suggests an interpretation of the 
Platonic Forms as irrationals and/or integers to be approached, but never reached,by the successive 
approximations obtained by the algorithmic method. 
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First, we have computed the night-arc from the shorter rectification of the semi-
circle. If the longer one is being used, the length of the shortest night will be longer. 
Even though this does not affect the approximative ratio (of day : night) much, it 
is likely that the shorter rectification (with a monotonous increase of 5° for each 
1/18 th of the arc) has been used. Witness the association of the day of 14 hours 
with Rakotis (Alexandria) up to Hipparchus. Second, in both cases me ratio of the 
shadow to the gnomon at the equinoxes (i.e. tangent of the latitude) will increase 
by 1/5 ths in the arachne.This does not mean that no other types of such ratios were 
used. Inhere are different types even in the tradition of the tables of parallels, and 
in the later tradition of the climata, of which we here see a modest beginning. For 
instance, when Hipparchus gives the latitude of Greece (c. 37°, by which he means 
Athens and the adjacent regions) it is the ratio of the gnomon to its equinoctial midday 
shadow 4 : 3 (which truly implies cp = 36°52', i.e. Cnidus or the nearby Cos rather 
than Athens), in his criticism against Eudoxus and Aratus (I, 3, 6). Judging from the 
context this is originally a Eudoxan ratio, and it hardly escaped Eudoxus' eye that 
the latitude of his home-town can be given by means of a Pythagorean triangle which 
is generated from an octave (For with p — 2 and <7=1, p2+q2 = 5, p2—q2 = 3, 
and 2pq = 4). Third, in the arachne angles are measured by means of ratios of two 
relatively prime integers generating a Pythagorean triple, their ratio being equi-
valent to the tangent of the half angle. If q : p = tan(a/2), then 2 pq : (p2—q2) = 
= tan a. This makes one ask about the form of the ratios of shadow : gnomon 
in our table. Yet, for any purpose of reference, these ratios can be taken as tangents 
of half angles (i.e. as q : p). It is not the angle of the latitude, or its complement, 
which is now being observed by the arachne, for we started from the observation 
resulting in the reading a : b (i.e. ratio of the parts of the diameter of the tropical 
circle). 

All these arithmetical juxtapositions were superseded by the Tables of Chords. 
Therefore, if we find any evidence for their use, it will probably be from a period be-
fore Hipparchus. The resul ts (the ratios) indeed come from an earlier period but 
we have not, so far, seen any vestiges of the m e t h o d that has produced them. 
Hipparchus' method is different from our reconstruction. Yet it admits, although 
with more difficulty than ours, of an interpretation of the preserved results. Unfortu-
nately there are very few historical sources suggesting how the pre-Hipparchian 
method looked like. 

One such source is Ptolemy's Syntaxis I, 67, 22, where he gives two limits to 
the angular distance between the tropics saying that it is nearly the same estimate 
as that of Eratosthenes, which Hipparchus also used. But Eratosthenes had given 
the arc between the tropics as ll/83rds of the meridian circle. Theon of Alexandria 
(in Ptol. Synt., ed. Rome, vol. 2, p. 528, 20) in his comment adds that the estimate 
was based on accurate measurement, and that the ratio 360° : 47°42'40" is the same 
as 83 : 11. Here we have, then, a parameter value s = 23°51'20" that was used for 
a very long time indeed (the true value in Eratosthenes' day was e = 23°43'40", 
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and of course s is not a constant, although the ancients so believed). This ratio 11 : 83 
is a notorious puzzle, and none of the explanations offered (by Delambre, Diller, 
Berger, or by Dicks himself, who discusses them in his book The Geographical Frag-
ments of Hipparchus, University of London, 1960, 167-169) is satisfactory. 

However, if 2s = ll/83rds of a circle, e = 22/83rds of a quadrant = 13 200 : 
: 49 822 of a Quadrant, which is very nearly 16 700 : 63 000 of a quadrant. In other 
words, Eratosthenes' measure for a quadrant being 63 000 stades (with tc = 3,15), 
the exact distance of the tropic from the Equator (down to the nearest hundred 
stades, as also elsewhere), is 16 700 stades. From other fragments of Eratosthenes 
(preserved in Strabo 72, 132, 133) we can compute that Syene, the nearest well-
known place to the tropical circle, was 16 800 stades from the Equator, correspond-
ing to the practical value s = 24°. This supports our reconstruction. It also sug-
gests the explanation of Theon's mistaken view. For 13 200 stades+49 800 stades = 
= 63 000 stades. Hence Theon has confused a method with its outcome. 

The nature of the method is, making a = 13 200, b = 49 800, c = 16 700, 
as follows: 
(4) a : b = c : (a+bya>a2+ab = cb 

which is one way of stating the problem of the application of the area, a problem 
that is solved instrumentally also by Eudoxus' arachne. Moreover, since a+b — 
— 63 000 (stades), the expression itself is another example of the method of juxta-
position. The original measurement probably pertained to the ratio of the two parts 
of the diameter of the tropical circle divided by the plane of the horizon at the summer 
solstice. 

Finally, we may recall that when at the long last division into 360 equal parts 
of the circle appears in Greek sources (in Hypsicles' Anaphorikos, c. 180 B.C.), 
it is applied both to place and to time (moirai topikai and moirai khronikai), once 
more connecting these two basic concepts (In one Babylonian horoscope text 
from 410 B.C. t h e zodiac and the Equator have been divided into 360 parts; see 
A. Sachs, Babylonian Horoscopes, J. C. S. VI, 2, 54-57). But then already the Tables 
of Chords were in use, and the original arithmetical methods were almost forgotten, 
continuing their shadowy life in the tradition of the time parallels and klimata 
alone. 

THEORETICAL CONTACTS BETWEEN TIME AND PLACE 

So far we have been discussing the numerical results, the instrumental usages, 
and the reconstructed computing techniques of a superseded tradition. These belong 
to the praxis of certain ancient astronomers, that is to say, to their craftsmanship. 
The praxis may have been replaced by more accurate observation methods and more 
accurate computing techniques. There should be, however, some evidence of the 
continuity of the theoretical framework. 
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The essence of our reconstruction lies in the assumption of the use of the ratios 
(a : b) of line segments (parts of the diameter of the tropical circle) as a starting point. 
And our reconstruction is set forth within the framework of the plane geometrical 
c i rc le model of the arachne. On the other hand, the later development is asso-
ciated with Ptolemy's spherical model, where the use of ratios of arcs and the 
use of chords of double arcs are being prescribed. I f a continuity of the theoretical 
framework between concepts of time and place is to be proved, therefore, we must 
show that what can be stated within Ptolemy's model, can be stated also within 
the arachne. 

A representative case where Ptolemy computes one parameter of his model 
(taking as an example the latitude <p = 36°N, the longest day of the year = 14j 
hours, the shortest night = 9{ hours, and e = 23°51'20") from the other para-
meters, is Syntaxis II, 2 (p. 60, Manit.). The proposition is as follows: 

Kig. 2. Ptolemy's spherical model A 0 = t) = half the day arc at winter solstice; 
e r = | = half the night arc at winter solstice; AE = 90°; 0 H = g; HZ = e'(e + %' = 
= 90°); HE = 5; BH = 6'(6 + 5' = 90°, the point H indicating the sunrise in the 

eastern horizon in the morning of the winter solstice); BZ = cp 

Meridian 

©A Z HB 
(5) AE ZH BE 

By means of the Tables of Chords (Synt. I, 11), the computations proceed as follows 
(see Fig. 2) 

113 
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s2b HB _ 113p37'54" 109p44'53" _ 103p53'23" 

s2b B E ] = 120p " 120" = 120p 

f rom which 2bHB = 120°, b H B = 60°, and b H E = 30° = 8, which was sought for. 
It may be noted that both the solstitial and the equinoctial colures (which are 

declination circles "partly curtained by the horizon"), are discussed by Eudoxus 
(Hipp, in Arat. et Eud. I, 9, 3-4). 

A 

Similar computations occur at Syntaxis II, 3 (p. 62, Manit.) where the latitude 
(of Rhodes, 9 = 36°) is being computed f rom the given values of other parameters, 
and elsewhere. In these cases, the parameters characterizing Ptolemy's system are 
the a r c s corresponding to the angles e, 9, vj, S and their complements (the arcs 

f] being deduced f rom the lengths of the longest and shortest day and night of 
•the year which the ancients conceived of in a symmetric fashion, paying apparently 
no attention to the effect of the atmosphere). It is typical for Ptolemy that he com-
putes the latitude in two steps : first S is obtained and the result is then used in com-
puting 9 (although 9 could be computed even without knowing 8, as in the earlier 
gnomon observations). 

As for the proofs of these propositions, Ptolemy refers to a lemma (I, 13). 

(6) TA : AE = ( r A : AZ) (ZB : BE) 

The lemma is accompanied by a plane geometrical figure. It is worthwhile to com-
pare the proof of the lemma and the reconstructed proof of the proposition (5), 
which we set abreast. A complete analogy is obtained through a simple transforma-
tion of the proposition. 

1° Auxiliary drawing: HE parallel to AZ Auxiliary drawing: 110 parallel to BE 
2° TA : AE = TA : EH (Elem. VI. 4) AE : 0 A = BE : ©Et 
3° \uxiliary parameter AZ introduced Auxiliary parameter BH (BH = S) 
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4° r A : EH = (rA : AZ) (AZ : EH) = TA : AE 
5° AZ : EH = ZB : BE(Elem. VI.4) 
6° Substitution ZB : BE/AZ : EH to 4° 
7° r A : AE = (rA : AZ) (ZB : BE) q.e.d. * 

BE : © n = (BE : HB) (HB : ©II) = AE : ©A 
HB : © n = Z H : Z 0 
Substitution ZH : Z0/HB : ©II 
AE : ©A «= (ZH : ©Z) (BE : HB) q.e.d. 

In modern trigonometrical terms, (II, 2) gives rise to the formula sin S = sin tf 
sins ' and (II, 3) to s in9 = tan rj' tan S. In the proof of the lemma a reference 
is made to a plane geometrical application of Eudoxus' general theory of proportion 
presented in the fifth book of the Elementa, and also the technique of introducing 
an auxiliary parameter is characteristic of him (in the theory of the homocentric 
spheres). The plane geometrical figure of the lemma is there seemingly for its own 
sake. It has astronomical significance, however, as we shall see after having discussed 
the corresponding problems connected with Eudoxus' circular model, the arachne. 
It may also be noted that the same figure is helpful in the construction of harmo-
nious point systems. 

Turning now to Eudoxus' arachne, such as it once was set up for meridian mea-
surement and for the determination of the latitude and other relevant parameters, 
close to the intersection of the main parallel of latitude and the main meridian of 
ancient geography, we see that exactly the same parameters will be obtained as in 
Ptolemy's spherical model. But in addition, a number of other interesting propo-
sitions, linking the arachne to the preceding gnomon measurements, will be obtained. 
The connections between them are based on simple geometrical considerations. 
Fig. 4 will be of some help. The triangles S'OQ and OBC on the one hand, and the 

Fig. 4. The main parameters: the arachne indicates the summer solstitial, equin-
octial, and winter solstitial shadows at noon (B, C, D),»cast by the gnomon (AO), 
the logotomos (QQ') deferr ing ratios (a : b) = QS' : QS of the diameter of the tropic 
circle to the circular plate (enoptron) of the instrument, the main arm of its mea-
suring unit indicating the pole of the heavens (polos, FP'), and a plumbline (QR) 
indicating the angle (ROH) which, when the outer meridian ring is turned into 
ortogonal position, gives the point of the sunrise in the summer solstice. Denote 
the angles ABO, ACO, ADO, as a, tp', p. The angle TPQ = POQ = AOC = tp, 

HOR = 5, and DOC = COB = e 
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triangles QOS and OCD on the other hand, are similar. Hence a : b = S'Q : QS = 
= CD : BC = FD : FB (whence a harmonious points system is formed). Further, 
QR is the geometrical mean of a, b (i.e. QT = QR = jlab). Noting that PS '= (a+b) 
: 2, PQ = (a—b) : 2, and QS == b, we can spell a number of interrelations between 
the parameters indicated, either in terms of a, b or in terms of other line segments 
of the figure. 

For the sake of a convenient survey, all parameters may be given in the table III 
(in terms of modern trigonometrical functions). 

TABLE i n 

- sin cos 

PQ : QO = 

:QO 

AC : oc = a-b 
OP QO = 5 : QO 

<p 
PQ : QO = 

:QO 

AC : oc = 
2 ' 

OP QO = 5 : QO 

e OP : OS = 5 13 PS OS = 12 :13 
QT :PT = QR: PS = \'ab : 

a + b 
' 2 

OP 
a-b 

: PS = -
a+b 

$ QR : OR 
: 13 

= QT : AO 

. 
II

 

§•
1 

QO : OR = QO : 13 

a _AO : OB AB : OB 
ß AO :OD AD : OD 

tan 

a-b 

PQ : OP = AC : AO = — — : 

: 5 a+b OP :PS = 5 : — — = 5 : 12 

TQ : PQ = Väb • 
a-b 

QR : QO - fä : QO 

AO : AB 
AO : AD 

These parameters may also be given in the form of a pyramid limited by four 
right-angled triangles (except the derived parameters a = <p'+e, P = 9'—s). 
By means of a comparison of areas of these triangles (Elementa VI, 1), a number 
of connections between the parameters can be established; e.g. 

(7) sin9 = tan!;' tan 8 (cf. Synt. II, 3) 
(8) • sinS = sine' sin? (cf. Synt. II, 2) 
(9) sine = sin9' sin8' 

(10) tanS = tan £ sin9 
(11) cos? = tane tan91 3 

(12) sina : sin(3 = a : b 
Modern notations can be replaced by references to parts of the arachne. 

It remains to show that there is a close connection to the plane geometrical 
figure of Ptolemy's lemma, the astronomical and geographical significance of which 
will then be understood. 

Since Ptolemy's computations pertain to the winter solsticg and Eudoxus' two 

13 D. R. Dicks, Early Greek Astronomy to Aristotle, Ithaca, New York, 1970, pp. 19-23, 
leads this particular formula, which Ptolemy does not use, to characterize the early stages of Greek 
astronomy and mathematical geography up to Aristotle, contending (pi 23) that Eudoxus had reached 
this stage of understanding (without modern notation, of course). 

\ 
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Fig. 6. The figure of Ptolemy's lemma at winter solstice (left) and at summer 
solstice (right) in Eudoxus' arachne 

ratios (a : b = 5 : 3 and YJ : £ = 12 : 7) to the summer solstice, their connection 
may be shown within one figure. As the ancients always considered that the longest 
day and night on the one hand and the shortest day and night on the other hand 

0 
Fig. 5. The main parameters 
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\ are of equal length, the only formal change in the transition from Ptolemy to Eudo-
xus is the substitution £/v). 

It can be seen that for instance OP : OM = NQ : NM = ZO : II<I> = sin e, 
OQ : QR = OQ : OE = ZO : O Y = cosS and PQ : OP = MG : GE = JIA : 
: AT = tanqj, while the night arc may be characterized also by means of the logo-
tomos (QQ'), for seen directly from above the sun-lit half of the Earth is limited by 
the line KO extended so that KL : IM = JV : VQ = ( a - b ) : ( a+b) = cos£ 
(and by the same means JQ : UJ = tana). 

Therefore the continuity of the theoretical framework from Eudoxus' arachne 
and circular model to Ptolemy's spherical model seems likely, the mediating link 
being the plane geometrical figure of Ptolemy's lemma (the figure itself functioning 
as a forerunner of a quadrant14). It remains to show that Eudoxus' model is predo-
minated by temporal concepts. 

» 
THE PRIMOGENITOR OF ALL SUN DIALS 

Since the reconstruction of the arachne (in 1976), we have been studying its 
capacities. It is a model of the geocentric world-view (in cross-section), solves the 
problem of the two mean proportials and of the application of the area instrumen-
tal^ , provides the dynamis (the square value of rectangle), generates conic sections 
as plane curves {e.g. a hyperbola can be drawn by means of it, for the measuring 
unit, which has given the instrument its name, the Spider, preserves a rectangle 
in all positions, and by means of rectangles with the same area a hyperbola can 
be drawn), and serves as an aid in mathematical invention (for instance, the heuristic 
ideas underlying the so-called Platonic solution to the problem of the two mean 
proportionals have been discovered, starting from Eutocius' hints). Moreover, 
it solves instrumentally the problem of combined spherical motions in Eudoxus' 
planetary theory. Here we have discussed, therefore, only a small number of its capa-
cities, viz. those that pertain to the interrelation of time and place in Greek mathe-
matical geography. 

However, even in this restricted use the instrument will offer a surprise or two 
more. For in his book De Architectura Vitruvius, who has handed down the name 
of the Eudoxan instrument (without any description of its structure), gives a figure 
that, according to him, is the principle of the construction of the analemma curves 
for all sun-dials (VII, 3). 

Looking at it we see that it is in fact the picture representing the arachne (which 
Vitruvius does not mention in this context) with the semicircles of the winter and 
summer tropics indicated. Hence the arachne can be used also in the construction 
of the analemma for all (other) sun dials, and it is, so to speak, the primogenitor of 
all sun-dials. 

1 4 The divisions OQ : QG and MG : GE by way of the d iagonal and ON : NE by way 
of the s ide (of a square) deserve close study in view of Timaeus 36C. The proof that MG : GE = 
= tan cp (by Elementa VI. 2) is easy when the square is complemented. 
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We need not dwell on the tropical circles any more; since the day and night 
arcs are given ire their terms, temporal concepts predominate explicitly. It is unne-
cessary to discuss here the monthly curves, either. They can be constructed by means 
of the small circle, but may represent a later stage. The crucial question is: How were 
the analemmata of the summer and winter solstices and the equinoxes constructed? 
A customer wishing to have his sun-dial inscribed would know either the latitude 
{i.e. the ratio of equinoctial shadow to the gnomon), the ratio of the solstitial shadows 
to the gnomon, or the length of the longest day (by means of a klepsydra). The Sun's 

/ ' v V 
é / \ / \ 

A B]\yé \ \ V r 
V v A I / 

Fig. 8. The analemma curves for a plane sun-dial by means of parallelograms 
with the same area (two hyperbolas and a line) 
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daily path being very nearly a circle, its rays through the tip of the gnomon describe 
a slightly oblique cone. It is not hard to make a device for the determination of the 
curves of intersection with a spherical sun-dial. With the horizontal plane they 
are hyperbolas. Since the points A, B, C, D can be determined and the angles 8 
computed, they can easily be drawn.—The second surprise was the actual discovery 
of the arachne in Cnidus. 

THE RETURN TO CNIDUS 

In August, 1976 I was invited by the Technical University of Istanbul to deliver 
a lecture on "the oldest computer in the world".15 I took along the bronze recon-
struction of Eudoxus' arachne and some members of my research group. The Turkish 
colleagues told me about an American archaeologist, Professor Iris Love, who had 
been excavating at Cnidus for several years, and, being pleased with my lecture, 
arranged a voyage from Halicarnassus (modern Bodrum) to Cnidus. We reached 
Bodrum after some two weeks' travel in Anatolia, and already this journey showed 
good omens.16 Even today, more than a year and a half after the journey, it is still 
impossible to digest the whole content of the experience. Six millennia, a greater 
number of civilizations, innumerable museums and archaeological sites—different 
people and variations of the Turkish kitchen and wines, changes of temperature 
from the freezing point to desert heath, changes of altitude from one and a half 
kilometers to the sea level and below (I had my frogman's gear with me), the fauna 
and flora of land and sea—the peasant's fields, the bazaars, the caravanserais, 
tourism, the silvan shadows and the mosques, the cry from the minaret top and the 
giant foot-print$ in stinking corners—the monumental and the bizarre, life in caves, 
cities, and lofty eagle's nests. 

In the Vikings' Miklagard, in Hagia Sofia itself, the midday sun, through windows 
looking due south at the right height, reached the centre of the church, reminding 
us of the astronomical tradition of Plato's Academy, which had guided the archi-
tects, the last academicians. In the Chora Church, again, we saw a magnificient 
fresco illustrating the three modes of human time intervined, Christ and Mary repre-
senting their own past, present, and future in one and the same composition. In 
Kirsehir, at Cacabey Mosque, originally a Seljuk roofless observatory (1272) with 
a round pool of water at the centre and a peculiar balcony above it at the side wall, 
we witnessed the continuation of the "mirror astronomy" once begun by Eudoxus 
with his arachne and its bronze mirror, the enoptron. We also remembered the related 

15 See E. Maula, E. Kasanen, J. Mattila, A. Siitonen, "Knidoslu Eudoksos'un 2350 Yil Once 
Gelistirmis Oldugu Dunyamin En Eski Hesap Mahimsi Arahne", Eletroteknik (Istanbul Teknik Univer-
sitesi), Istanbul 1976. 

16 My paper "The Return to Cnidus" mimeographed, University of Oulu, was our first report 
written immediately after our return to Finland. This chapter has been based on it, although the 
discussion is based also on some papers of Iris Love which I have obtained only presently. 
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observatory of Samarqand (1428), the heir of Nasiraddin at-Tusi's (1201-1274) 
observatory at Hulagii's capital Meragh (in modern Azerbaijan). In the lands of 
Islam the religious need of finding the qibla, the direction of Mecca, had nourished 
the astronomical geography making use of the principles discovered in Ptolemy's 
Megale Syntaxis since the Arabic translations in Caliph al-Ma'mun's days (813-833). 
Yet I think that even today the technique of finding the correct direction has not 
been really understood. 

But we met also other messengers. At the station of Perge, near Antalya and 
Aspendos (where the famous architect Zeno in the second century A.D. built one 
of the best preserved ancient theatres), we got acquainted with a running tortoise, 
perhaps a descendant of Achilles' winner. It accompanied us to the birth-place of 
the Ionian philosophy of nature. When we left for Bodrum, it remained quite sati-
sfied at the theatre, no doubt enjoying the company of the great spirits of Thales, 
Anaximandros and Anaximenes. On the voyage from Halicarnassus to Cnidus, 
a dolphin in the best ancient styleled our way. And finally at the southern harbour 
of Cnidus, we met a lonely donkey, although we were unable to tell whether it was 
Eudoxus' incarnation or a reminder of our folly in trying to return through 2300 
years to Eudoxus' home-town, which is situated on the uttermost tip of a long, 
mountainous promontory near Cos. 

Once the capital of the Dorian Hexapolis, later famous for Praxiteles' statue 
of Aphrodite Euploia (the epithet has been met at the borders of the -oikoutnene,, 
in Olbia), for Eudoxus' observatory and its medical school competing long with 
the Asklepieion of Cos, and for its olives and wines (to witness: even today the red 
Halikarnas remains the best wine we ever tasted), it fell into oblivion in the seventh 
century A.D. In the fourth century B.C., in Eudoxus' day, the city, surrounded by 
its two harbours connected with one another by a canal, was replanned in squares, 
and just this town has been excavated by Iris Cornelia Love, our divine guide. 
In long seven years, not ever knowing of each other, we had both been inspired by 

.Eudoxus. The rendezvous was worth a life's long work. 
We began our anabasis, led by Iris Love, from the Small Theatre, seating some 

four thousand spectators and looking to the sea due South. Somewhat higher (the 
stepped North South streets, seven in number, have a gradient of 1 : 3)17, there is 
an appropriate site for the Bouleterion, the sea-lanes of the Eastern Aegean clearly 
in sight. Besides a vast ceramic industry (65 % or more of the 40 000 stamped amphora 
handles found in Athens are Cnidian)18, her olives and wine, exported to the Black 
Sea, Italy and Egypt, the prosperity of Cnidus was based on her excellent position 
guarding, together with Rhodes and Cos, the main commercial routes. It is not 
without a good reason that the Cnidians ordered from Praxiteles a statue of Aphrodite 
of the Fair Voyage. 

17 I. Love, Knidos-Excavations in 1967, "Turk Arkeoloji Dergisi" (TAD) XVI. 2, Ankara 
1968. 

18 Ibid., p. 135. 
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Above the Bouleterion once was an equally scenic taverna, as proved (in the 
archaeological understatement) by "a considerable number of broken wine-jars". 
At this stage we told Iris Love that it is certainly here that Eudoxus, who also prefer-
red red roses to pansies, must have been meditating the secrets of life. To her surpri-
sed inquiry into proof, we pointed towards the arachne glittering in sunshine on top 
of the cabin of our boat down at the harbour, saying that it was exactly by the same 
method, practised in a sauna in Hauho, that we had reconstructed the instrument 
and its main capacities entirely from literary sources, which give, even them, only 
its name and some numerical results of the measurements and computations. More-
over, we told her that the instrument, which she had not seen as yet, would give the 
solution to the enigmatic town-plan with the square insulae, the distances of 60 meters 
between the centres of the main streets19 (which is not in accordance with the Hip-
podamian principles, nor like Sostrates' design in Alexandria)20, and the exact NS 
and EW directions of the streets. 

Fig. 9. The reconstructed arachne; general view; from Insinooriuutiset / The En-
gineer's News, 18.11.1977; Finnish Patent No 54205; At the Museum of Technology, 

Helsinki, Finland 

This began one of several, more and more penetrating examinations of our 
work, so that byeach step upwards, along a terraced NS street, we approached our 
common goal with ever more difficulty. But Iris Love became satisfied with our 
inner seriousness combined with an irresistible outer exhilaration. 

At any event, when we reached the backbone of the town-plan, the main EW 
street (although we did not know it as yet), and saw an excavated part of a completely 
round cistern, we immediately told her that this must have been Eudoxus' obser-

19 I. Love, Knidos-Excavations in 1968, TAD XVII. 2, Ankara 1969, p. 123. 
20 See TAD XVI. 2, p. 134. 

\ 
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vatory. And so it was, according to her considerations too. Her argument was 
based on the town-plan, ours on the idea that it was not an ordinary cistern at all, 
but rather another "mirror" resembling the bronze enoptron of the reconstructed 
arachne, and a similar arrangement at Cacabey. And we both knew Strabo's testi-
mony that the observatory was somewhat above the roofs of the houses. Iris Love 
told us that such a round, extremely shallow "cistern" was unique in her experience, 
too. However, if it belonged to an observatory, the site was most appropriate, for 
the whole panorama of the city and the surrounding seascape evolved in front of us, 
albeit the ruins were hiding further details from the eye. 

Now follows the final rise to a cliff a little North of the main street, Iris Love's 
fair step leading the way from a precarious stone to another. We knew that the 
climax was there, just as surely as in making love. And like Making Love it was, 
after all preludes, after the long ascent through mundane things towards the pure 
intellectual enjoyment, just as in Plato's Symposium. And next the Sudden, the 
exaiphnes of the Parmenides which changed everything in no time. We looked down 
and saw a round temple below us, a solitary stone pillar standing at its centre. We 
recognized it immediately for what it was: Our seven years' dream in stone. Eudo-
xus' arachne was still shooting the rays of the setting sun from far below—but 
its stone copy was sixty times magnified. 

Fig. 10. The c ircular t e m p l e according to Vi truv ius ( from Durm) 

Iris Love told us that on this site, under the monopteros of Aphrodite first exca-
vated21, there had been the present round edifice of the same dimensions, where 
the statue of Aphrodite (its original head may be Head No 1314 in the British Mu-

2 1 See I. Love, Excavations at Knidos in 1971, TAD XX. 2, Ankara 1974, p. 106. Although 
the bronze coins bearing the head of Aphrodite Euploia are not accurately dated, in the vicinity 
it was discovered also a terracotta head of a woman from the first half of the 4th century B.C. 

8 — Organon 15 
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seum) probably was situated. However, the original monopteros was a unique temple, 
for it was roofless and housed the stone gnomon excavated in situ. The monument 
was surrounded by eighteen columns (reminding us of the rectification of a quad-
rant when 7r = 3.0), which is in accordance with the Vitruvian canon, but its roofless-
ness and the gnomon separate it from the temple at Tivoli and from Vitruvius' descri-
ption (4, 8,1-3) pertaining to round temples, some of which indeed are without a cella 
like the Cnidian edifice. 

It is no wonder that this monument (d = 17.30 metres) was later, at the second 
stage of building, turned into a temple. But we saw in it, as it was reconstructed by 
the archaeologists, a majestic world-model of the geocentric system, the system so 
ingeniously mathematized by Eudoxus, first time in the history of science. 

The moment was so laden with vision, not to say clairvoyance, that it left us 
speechless. The sun was setting. At the autumnal equinox approaching it would 
set due West, in the direction of the main axis of the town-plan. The details of the 
long ascent now assumed their full meaning. We had reached a vantage'point in 
time and place, where the ancient tradition of observatories, starting from the mega-
lithic stone-rings moving westwards until they achieved the Atlantic, had created 
a fulminant shrine for a mathematical genius. From there in turn the radiation 
spread over a number of exact sciences, completely bright after two thousand years. 

And we also saw in our eyes the meaning of the town-plan. Its main streets 
intersecting at right angles, seven in the NS direction and four in the EW direction, 
looked like a magnificent map lattice of the then known inhabited world, oikoumene, 
spanning by latitudes and longitudes based on equal in te rva l s of t ime the lenght 
from the Pillars to India, and the breadth from the Equator to Borysthenes and Olbia. 

But higher than that one could not go. Just as in Eudoxus' double method 
of analysis and synthesis (see "Philosophia" IV, Athens 1974), after reaching the cul-
mination point, we had to descend. The katabasis could begin. 

Slightly W from the round monument Iris Love had excavated six smaller altars 
and one greater one set apart from the rest. The seven planets, perhaps, and the star 
dedicated to Aphrodite, the most prominent of them? But in the vicinity there was 
also a perfectly rectangular water container of excelent masonry and provided with 
a system of double, at times triple pipe-lines on the outside. Obviously a great preci-
sion was aimed at, but for what purpose? No one has given a definite answer, but 
since our reconstruction of the arachne so fully corresponds to the round monument, 
I am perhaps allowed to submit an explanation of this find also. 

I presume that it is a klepsydra and that the pipe-lines are there for the regulation 
of the outflow of water. I had predicted (in my paper "The First Beats of a Dynamic 
World-View", written in 1975) the use of a klepsydra for mathematical purposes. 
For in as much as the outflow can be regulated, a constant motion can be created 
and consequently, by means of a simple device, the central curve of the ancient 
mathematics, known as the quadratrix, can be produced. 

But the vicinity of the round building warrants the presence of the klepsydra 
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Fig. 11. The second stage of building, hence no gnomon at the centre (from I. 
Love, Excavations at Knidos 1972, TAD XXI. 2, 110) 

also for other reasons. For this building is an appropriate place for solar and lunar 
observations from the SE to the NW horizon (there is a cut in the rock of the island 
Triopion, permitting-tfee observation of sunset at winter solstice; note also that in 
his criticism Hipparchus uses the term "ocean" for the horizon). Moreover, the 
rooflessness permits also the use of the round edifice as a pelekinon sun-dial. Eudoxus' 
observatory, again, is better suited for observations pertaining to zenith. From this 
it would follow that his Canopus observations were probably executed in the round 
building.22 These observations are connected with his attempt at an estimate of 
the circumference of the Earth, for Canopus is "the star Visible in Egypt" (Hippar-
chus), where Eudoxus once made an expedition. All tbis supports tbe idea that the 
whole quarter was dedicated to scientific activities during Eudoxus' life-time, and 
perhaps in other times also. 

Descending a little more, Iris Love led us to a third, and in my opinion, decisive 
piece of evidence. It was a sun-dial scooped in the form of a semiparaboloid, out 

22 See Strabo (c 119) for these observations. According to Iris Love, TAD XX. 2, p. 108, the 
terrace below the round building may have been in large part an open area. This makes the horizon 
observations possible, because of the gradient of the streets. Cf. also Pseudo-Lucian's (end of the 
A.D. 3rd century) description of the temple where Aphrodite's statue was held. 

< 
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of a block of stone. It was once provided with a horizontal gnomon (now lost, but 
clearly indicated by a groove). Vertical incisions show the hours, and horizontal 
ones the equinoxes and the solstices. According to Derek de Solla Price this design 
(some 40 specimens are known) "was constant from at least the fourth century B.C. 
until late Roman times".23 It is very interesting to note that by means of the recon-
structed arachne conic sections indeed can be produced, and that according to the 
tradition Eudoxus' pupil Menaechmus invented them (see "Philosophia" V/VI, Athens 
1976). But in addition to this single sun-dial, there is the gigantic arachne and the 
klepsydra. Taken together they show that precise measurement of time was probably 
the foundation of the scientific activities in Cnidus. So our descent continued al-
though darkness had fallen. Down, down we followed the invisible path toward 
the harbour again, toward a glow of fire at the waterfront. 

There our captain, a real pirate and a veritable lady-killer, turned out to be a 
cook also, grilling a whole lamb for our late dinner. Wine was rich and Iris Love 
and her younger colleagues the merriest of companies. We were happy together, 
and I told them about our work leading step by step to the reconstruction of several 
kinds of measurements known to have been executed by Eudoxus, until just half 
a year before our meeting the arachne arose. They now saw the reconstructed instru-
ment for the first time. 

Figs 12—14. Arachne in the measurement of angles 
Arachne in the determination of a : b 
Arachne in the solution of a : x = x : y — y :b 

And then occurred the last great surprise of our voyage. Iris Love recognised 
a part of the instrument, the dioptra, which also serves as a transversal cutting two 
intersecting lines in the same ratio (hence Vitruvius' term: the logotomos). She had 
excavated this part in the vicinity of the round edifice. It had been labelled, with 
a query, as "a bronze key to the gate of the temple of Aphrodite". This description 
could fit the notch at one end bent at right angles to the arm (although such an extre-

23 See TAD XVI. 2, p. 137 (Iris Love speaks of "elliptical sun-dial", but it was in fact semi-
paraboloidic); the gnomon of 17.9 cm would have given an accuracy of half a degree. The photo-
ragphs do not show the geometrical drawings engraved on the backside of the sun-dial. 
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mely simple key could hardly fit the prosperity of the temple). Yet it does not fit 
at all the small hole at the other end similarly bent. It was the auxiliary arm of the 
arachne, provided with sights, which had been excavated in the vicinity of the monu-
mental world-model of the geocentric system. 

It was here that the research programme of "saving the phenomena" was executed, 
in the round edifice which certainly was an adequate site for Aphrodite Euploia 
also. There it was, high above us, only dimly lit by the seven planets and the eternal 
stars. 

We remained sitting there on the lap of the night, discussing the astronomical 
odds against a mere coincidence as an explanation for our meeting there and then. 
It must be Eudoxus' logical soundness, and his intellectual penetration, witnessed 
by the fact that Dedekind and Weierstrass only one hundred years ago could con-
tinue exactly from the point where Eudoxus had left his message (Elementa V, 
Definition 5), that provides part of the explanation. In the sim lar fashion Eudoxus' 
paradigm for the meridian measurement held its own up to Maupertuis' expedition 
to the River Tornio in 1736-1737, and the ideas contained in his theory of the homo-
centric spheres (refined by Callippus, Aristotle, Ptolemy and others) laid the founda-
tion for mathematical astronomy up to Galileo Galilei. 

The farewells long after the midnight were bitter-sweet. Next morning we set 
sail for Halicarnassus, where I gave a talk at the Museum, reviewing what we had 
seen in Cnidus and promising to return again. 

A VIEW ACROSS THE AEGEAN 

Next autumn I returned to the Aegean, to Cos, seeing Cnidus only through my 
field-glass. But I had a clear idea where I should go: to the point nearest to Cnidus 
on the SE tip of the island. For that is the point where the latitude can be expressed 
as an acute angle of the fundamental Pythagorean triangle with sides 3, 4, 5 being 
generated from the octave (for \ip : q — 2 : 1, then a = p2+q2 — 5, b = p2—q2 = 
= 3, and c = 2pq = 4). But I did not know exactly wha t there was to be found. 

Now the general picture seems clearer. Since 430 B.C. when Hippocrates won 
fame by healing the pest in Athens, the importance of the Asclepieion in Cos had 
all but eclipsed the medical school in Cnidus (where Hippocrates had studied). 
In 366 B.C. the Asclepieion was removed to its present site near the modern town 
of Cos, and foundations laid for the magnificent institute, which was to collect 
great treasures. 

On the other hand after Konon's victory at the sea-battle of Cnidus, the ancient 
fame of Cnidus, as a,shrine of Aphrodite, as the capital of the Dorian hexapolis, 
and as a site of a medical school, was in need of a new accentuation. Hence the 
Cnidians invited their famous countryman Eudoxus back to his home-town as a 
lawgiver. According to the archaeologists' dating the new monumental centre 
of Cnidus (based on mathematical principles, as we have seen) was built in Eudoxus' 
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time, and the statue of Aphrodite Euploia was ordered from Praxiteles. The beauty 
of the new town-centre must have affected the choice of patients, when they had 
to make a decision between Cos and Cnidus.24 Moreover, Eudoxus could point 
out that the very site of the town was unique, because.its latitude was generated 
from the harmony of music. 

The only possible answer of the priests in Cos was to show that health is even 
more important than astronomy and mathematics, and that the real latitude genera-
ted from the octave pertains to the NE shore of Cos. And miraculously, almost 
overnight, the divinity opened three healing sources on the very spot where water, 
land, air, and fire (in the form of the three volcanic sources), meet one another. 

Being in good health myself, I crept deep into the interior of the leftmost source, 
now almost extinct, and discovered remnants of old archwork without mortar buried 
in sand. Perhaps the hand of a human demiurge had assisted the miracle? I also 
took samples of the volcanic salts, which are being analysed, and enjoyed the healing 
powers of the other two sources. 

The old competition between the schools of Cnidus and Cos, it seems to me, 
explains the finds in Cnidus in Eudoxus' day. Yet in 336 B.C., only a year after his 
death, the present Asclepieion in Cos was built, and the palm of final victory was 
in Cos. A crack in the podium of the round building in Cnidus bespeaks an earth-
quake: there was no one to continue Eudoxus' work. 

However, even though Eudoxus' home-town fell into ruins, his ideas did not. 
Some of them we have mentioned, but there are also others which deserve further 
study. For instance the sun-dials and the different projections used, eventually leading 
to the astrolabe25 and the quadrant. In the field of mathematical heuristic, Fermat's 
greatest idea, scribbled on the margin of his Latin copy of Diophantus, calls for a com-
parison with Eudoxus' ideas pertaining to the Pythagorean triples. Also the tran-
sition from the homocentric spheres to the epicycles and eccentric motions remains 
to be studied.26 And the genealogy of the sun-dials, deriving from the analemma is 
an obvious avenue for further research. 

The most characteristic feature of the results so far obtained is the Eudoxan 
emphasis on time and temporal measurement. It is discernible in the use of the al-
gorithms (1, 2, 3) and in the very choice of the specific days of the year for the obser-
vation. In his circular model, the same feature is seen both in the connection with 
earlier gnomon observations27, e.g. in the formula (12), and in the reconstructed 

2 4 Small marble copies of Aphrodite, other souvenirs, bronze coins with the head of Aphro-
dite, and a cave full of ceramics, from over 1400 years from the 7th century B.C. on, witness the 
commercial aspect of the activities connected with the round edifice; see TAD XXI. 2, p. 90 f. 

2 5 See E. Maula, Points of Contact between Physics and Philosophy in their Early History, 
Report Series in Theoretical Physics, University of Turku, Turku 1975. 

2 6 See E. Maula, An Ancient Principle of Indeterminancy, Report Series in Theoretical Physics, 
University of Turku, Turku 1977. 

2 7 See A. Szabo and E. Maula, Anaximandros und der Gnomon, Acta Ant. Acad. Sei. Hung., 
1977, and Der längste Tag und der Schattenzeiger: Untersuchungen zur Frühgeschichte der grie-
chischen Astronomie und Trigonometrie, ibid. (forthcoming in 1980). 
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beginning of the trigonometrical tables. Finally, it pervades the formulae (7-11), 
be that through the measurement of day and night or through the observation of 
the sunrise. Indeed, the arachne is an instrument to be used in the geometry of 
motion in general, albeit we have here discussed it only in the analysis of the Sun's 
spiral motion. 

This analysis has bestowed us with a theory of mathematical geography, where 
the interrelation of time and place assumes a most interesting philosophical form. 
For denote the geometry of place outlined G(x, y) and the geometry of time adum-
brated G(t), and the most universal generalization is 
(13) G ( 0 G(x, y) G(x, y) G(t), i 

as we can gather from the theory of the klimata or hour-parallels, and perhaps also 
from the map-lattice in Cnidus. It underlies the modern system of time-zones and 
parallels of latitude also, although we seldom consider the latter from a temporal 
point of view. On the other hand, temporal concepts succur Eudoxus' unparalleled 
fertility and heuristic insight in the development of the exact sciences.28 

Our way of reasoning is reduced—especially within the analytical school of philo-
sophy—to merely analogical patterns for time and place, and there are marked 
tendencies toward an elimination of heuristics.29 This may be warranted occasio-
nally, as it was in the precision of modern calculus. But it is certainly unwarranted 
in the discussion of many earlier stages of development. Witness the futility of ex-
planations given to Plato's criticism against the contemporary geometers. And wit-
ness also the standard analyses of Zeno's paradoxes. 

For better assurance, consider how the analogical way of reasoning is imputed 
to Zeno without ever asking whether he conceived of time and place in the similar 
fashion. Trying to do justice to the logical acumen of the Elea, we may well group 
the paradoxes against motion according to whether time is discrete or a continuum. 
But once we begin with discrete time, we almost certainly also assume that place 
and motion are discrete. And if we begin with continuous time, by the same token 
place and motion will become continuous. Yet neither the extant fragments nor 
Zeno's silence warrant these analogous assumptions. 

However, one might argue that this is not too dangerous because at least there 
is only one metric for both time and place. But we have seen that it is not the case. 
Within the truly scientific framework of ancient mathematical geography, it is not 
the case that a motion once commenced will cover the same distance in the same 
time, disregarding the direction and place of the motion. In fact, we often impute 

2 8 See the papers by A. Siitonen, J. Mattila, E. Kasanen, T. Airaksinen, J. Mittelstrass and 
A. Szabo in Analysis, Harmony and Synthesis in Ancient Thought, Acta Universitatis Ouluensis 1977, 
eds. A. Siitonen and J. Mattila, Oulu 1977. 

2 9 A striking case is discussed in P. Marchi's, J. Agassi's and J. R. Wettersten's review The ' 
Death of //e«ra/i'c?„Philosophia"1978 (USA),on J. Hintikka's and U. Remes' The Method of Analysis. 
The reviewers show that since the authors cannot distinguish between a proof and a proof procedure, 
their book becomes a series of non sequiturs, "not only a dud with no redeeming virtues; it is also 
misleading, confusing, and perhaps disingenious" (as the critics say in their MS). 
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to Zeno and his contemporaries our own notions of speedometers and fast vehicles, 
not to mention a logic of induction to enable them to generalize from a few cases 
of measured motion. The fixed stars will move with uniform velocity in simple cir-
cular motion, but the motion of the planets already is far more complex, since they 
seem to speed up and slow down their movements. This is the problem posed by 
Plato and solved by Eudoxus, and even though the component motions of his spheres 
were uniform (in which case they probably are not circular but spiral), their com-
binations aim at the "saving of the appearances", which are not uniform. In Zeno's 
case, again, the imparity of time and place leads to an even more interesting picture. 
For an arrow sent to fly by a mighty bow toward North will be slowing down at 
each consecutive moment of time, until its motion eventually stops altogether. 
And if the handicap between the myth-armoured Tortoise and the steel-tendon 
Achilles will be measured northwards, both will be running slower and slower, as 
an outside arbitrator at rest could say, finally standing still. Furthermore, if the arrow 
or the two competitors go southwards, different, but equally interesting results 
would be reached. 

These interpretations of the Zenonian paradoxes will ruin the case of Parmenides' 
opponents even more effectively than the current ones reducing motion literarily to 
absurdities. And if we want to replace here the ancient analysis of the Sun's motion, 
which underlies our interpretation, by other paradigms for the interrelation of time 
and place, there are other cases, where the predominance of temporal concepts is 
to be understood. Even if one would dispense with the geometry of motion and much 
of Greek mathematical heuristic, there still are the all-pervading myths of Sisyphus 
and Tantalus and Chronus which show that time for the Greeks played a special 
algorithmic and ateleological role, hardly appreciated by us as yet, although Eudoxus 
certainly penetrated the crust of merely analogical reasoning as regards the interre-
lation of time and place more than two millennia ago. 


