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A 2n-NUMBER SYSTEM 
IN THE ARITHMETIC OF PREHISTORIC CULTURES

This work has originated from reflections on two particular objects:
—the sexagesimal number system of the Babylonians,
—the arithmetic of non-metric physical units.

1.1. There are separate theories on the formation of the sexagesimal number system 
of the Babylonians (Wilkosz, Struik, Aaboe). An ancient understanding of the 
year composed of 360 days, a division of the circle into 6 equal parts by its radius, 
and the need of a convenient multiple of a Sumerian and an Akkadian measure of 
weight are alternatively considered to have been involved, and the excellent divisi
bility of number 60 is supposed to have been decisive for its viability. Yet, along 
with the sexagesimal system the decimal system was used, and there is firm evidence 
that practical calculations were carried out in the decimal system, whereas the use 
of the sexagesimal system was restricted to theoretical considerations of pure mathe
matics and astronomy (Aaboe). This casts doubts on the theory relating the origin 
of the sexagesimal system with the practical need for a common unit of weight. Nor 
is it safe to assume that it was an odd local invention. Notably, a sexagesimal system 
governed an Old Chinese chronology. “The ancient Chinese reckoned their days, 
months, and years, by a sexagenary cycle formed by the combination of 10 celestial 
stems and 12 terrestrial branches. Each double name in the cycle consists of a stem 
name and a branch name. In order to complete the cycle of 60 the 10 stem names 
are repeated six times alongside the 12 branch names which are repeated five times.” 
And, “some of these cyclical names were supposed to have originated as far back 
as the 27th century B.C.” (.Encyclopaedia Britannica). It has also been found that 
“Sumerian names of numbers are based not on a sexagesimal or duodecimal system, 
but partly on a quinary (6 =  5+1, 7 =  5+2), partly on a decimal (30 =  20+10), 
partly on a vigesimal system (40 =  20-2, 50 =  40+10).” This has led to a suggestion
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that the Sumerians inherited the sexagesimal system from some other unknown 
population (Collier's Encyclopedia). The enigma of its formation unsolved, one could 
well ask why a number system of so high a base should have come into use at the 
very beginning of mathematical thought (Kulczycki). The good divisibility of number 
60 is certainly a poor compensation for the inconvenience of a multiplication table 
running up to 3600, which in practice required the constant use of mathematical 
tables to perform multiplications and divisions. In fact, the disappearance of number 
systems others than decimal has been explained by the inconvenience of too long or 
too short series of basic numerals (Milewski). With the sexagesimal number system 
a reverse process/has to be taken into consideration: it came into use in spite of 
an essential inconvenience. And this cannot be explained by a natural development 
of the skill of counting on fingers and toes.

1.2. Physical units were until quite recently not Concordant with the decimal number 
system, and many units used up to now, notably those used by the Anglo-Saxons, 
are still not concordant. The list of non-metric units extracted from Mala Encyklo
pedia Powszechna shows a certain regularity of their arithmetical construction.
China Area: mou =  60 ch’ih

Weight: chin =  24 liang
Japan Length: ri =  36 chô; 1 ken =  6 shaku
Spain Length: legua =  23 • 103 varas, 1 vara =  36 pulgadas

Area: caballería =  60 fanegas
Volume: cahiz =  12 fanegas, 1 fanega =  22 quartillas 

cantara =  23 azumbre
Weight: arroba — 2“2 quintales

France Length: perche =  18 pieds, 1 toise =  6 pieds 
pied == 12 pouces =  144 lignes

Romania Length: mili =  22 • 103 stangene
Volume: kilo =  2 mirze =  23 bannizi

dimerla =  2~4 kilé =  24 oke, 1 oka =  22 litre
Holland Weight: scheeplast =  22 ■ 103 pound 

pound. =  24 onsen =  25 looden
Denmark Area: tonde =  23 skjepper

Volume: ohm =  24 • 10 pott, 1 kande =  2 pott
Sweden Area: tunnland =  25 kappland

Length: stang =  23 aln =  24 fot
Germany Area: Quadrat-Rute = 1 4 4  Quadrat-Fuss 

Quadrat-Fuss =  144 Quadrat-Zoll
Volume: Scheffel =' 24 Metzen
Weight: Pfund =  24 Unzen =  25 Lot “

Switzerland Length: perche =  24 pieds, 1 lieue =  24 • 103 pieds
Volume: Saum =  22 Eimer, 1 Mass =  22 Schoppen
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Great Britain and United States
Length: 1 statute mile =  23 furlongs =  1760 yards 

1 yard =  36 inches, 1 foot =  12 inches 
Area: 1 square mile =  26 • 10 acres

1 rood =  2-2 acre, 1 acre =  22 •10 rods2 
Volume: 1 last =  26 • 10 gallons, 1 barrel =  36 gallons

1 quarter == 23 bushels =  2s pecks =  26 gallons 
1 gallon =  22 quarts =  23 pints =  2s gills 

Weight: 1 pound =  24 ounces =  28 drams 
Poland Length: 1 mila =  23 stai, 1 łokieć =  2 stopy =  24 cale

Volume: 1 antał warszawski =  18 garny =  2-2 beczki 
1 ośmina =  2~3 beczki, 1 czasza =  12 garncy 
1 ćwierć =  23 garncy =  2S kwarty 
1 kwarta =  22 kwaterki, 1 korzec =  27 litrów 

Weight : 1 korzec =  6 pudów, 1 skrupuł =  24 grany 
1 cetnar krakowski =  24 •10 funtów 

There are pure 2" sequences as 1 gallon =  22 quarts =  23 pints =  2s gills, deci
mal multiples of 2" numbers as 1 square mile =  26 • 10 acres, or units related to the 
sexagesimal or duodecimal number systems as 1 caballeria =  60 fanegas or 1 foot =
12 inches. Data on weights and measures of ancient cultures show a similar arithme
tic (.Encyclopaedia Britannica), and a prehistoric system of weights belonging to the 
Culture of the Indus Valley (Mohengo-Daro, Harappa) is reported to have operated 
the following multiples of a unit equal to 0.8565 gram: 2, 22, 23, 24, 25, 26, 24 • 10, 
200, 25 • JO, 26 • 10, 24 • 102, 2s • 102, 26 • 102, 23 • 103, 27 • 102 (Volodarski). The result 
of a historical tendency in the development of physical units is clearly the concordance 
with the decimal number system. What was the starting point? Must it be taken for 
granted that a discordance in counting and measuring goes back to the very begin
nings of these human activities? There is another fact in the early history of mathemat
ics which could be meaningfully related to the facts here discussed, namely, a binary 
technique of performing multiplications and divisions by a successive doubling and 
halving of decimally denoted magnitudes employed by the Old Egyptians. This 
technique, described as primitive and rudimentary (Aaboe), was effective enough 
to be commonly used in medieval Europe—the so called “duplicatio” and “mediatio” 
method, and even more recently—the Russian peasants method (Wilkosz, Encyclo
paedia Britannica). That again reminds us that a successful decimal arithmetic— 
which to become such had to wait for the introduction of the zero sign—is historically 
a late development as well.

The facts brought here to notice will be explained as diverse manifestations of 
a single prehistorical reality. The meaning of “prehistorical reality” is here “unre
corded—and speculative.” Theories on the past are doomed to be speculative. 
Theories that have to refer to documents or other information belonging to later 
periods than that under investigation are likely to be in a higher degree speculative,
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but do not differ essentially from other theories on the past. And they are common. 
This theory is further handicapped by a methodological “blackout,” as the process 
involved evades description. It will, however, be judged by its technical merits and, 
as all theories on the past, by present preferences.

2.1. Consider the octagram on Fig. 1. Let the radii of the octagram denote the se
quence of 2" numbers for « =  0, 1, 2 , . . .  7. The combinations of 8 radii in sets of

1, 2, ... 8, taken as sums of 2" numbers, denote the numbers from 1 to 28—1, and 
the figures of a 256-number system. It may be defined as a binary-contracted-to-28 
number system, and its apparent binary interpretation is that the direction of radius 
gives the position of the binary digit 1, whereas the absence of radius—the position 
of zero.

Example:

(162)10 =  27+ 2 5+ 2 1 =  (10100010)2 =

The Arabic figures from 0 to 9 written as sparingly as on Fig. 2 give an average 
of 3.1 graphic elements per sign. The decimal numbers from 1 to 255 contain 9 + 2  • 90 
+ 3-156  =  657 figures and 657-3.1 =  2037 graphic elements. The respective 
number of elements for a 2" number system is n • 2n~i , which for n =  8 gives 8 • 128 =  
1024 graphic elements. The numbers from 1 to 255 are in the English language ex-

h  z h  n  7  n
■ '  ^  ' Fig. 2

Fig. 1
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pressed by 1160 syllables. Accepting for the 28-system one syllable per element, the 
respective total of syllables would be 1024. The 28-system is thus considerably short
er in script compared with the decimal system in Arabic notation and would be 
shorter in speech compared with decimal numeral systems of Indogermanic languages.

The effort of script and speech can be further lessened if every three and more 
successive elements are expressed by two elements according to formula

( 1) < 2" + 2"_1 +  ... + 2 n ~ k =  2n+1— 2n~ k

Example:
25+ 2 4+ 2 3 + 2 2 + 2 1+ 2° =  26—2° =  63 

Denoting negative values by a broken radius the above example will be given as

6 3  =  ^  “  1

Numbers exceeding 255 may be denoted according to the principles of positional 
number systems or the system may be developed to a 22'8 clock-dial-modelled system 
with powers from 8 to 15 denoted by signs as shown in the examples below, and 
understood as ±  big 0, ±  big 1 ,... ±  big 7.

256 =  28 =

20217 =  214+ 2 12—2s—23+ 2° =  .

A more economical notation based on a 16-radius symbol is possible, but it would 
require preprinted patterns of the symbol to be filled in with heavy strokes. The system 
will be denominated the “solar number system,” its numbers—the “solar numbers.”

4

Fig. 3

1800 ■=■ 2u - 2 8+ 2 3 =

257 =  28+2° ? 319 =  28+ 2 6—2°
1
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The solar number system is related to a number system represented by the octa- 
gram on Fig. 3. Let the radii of the octagram denote the sequence of 22" numbers 
for n — 0, 1, 2 , . . .  7. The combinations of 8 radii in sets of 1, 2 , . . .  8, taken as prod
ucts of 22" numbers, denote all 2” numbers from 21 to 225 5. The system will be denom
inated the “natural number system,” its numbers—the “N  number s.” A solar number 
is thus the sum of N  numbers which are products of 22" numbers.

The sequence of N  numbers ... 2-4,2~3,2 -2, 2_1, 2°, 21,2 2, 2 3, 2 4, ... may be now 
denoted as

\ '

. . .  > ,  - © ,  JD , cp , C ^ ,  O - ,  o ' ,  0  , . . . . . . .
or

• • • ©» ^ , ^  ^  ^  *

\ ,  , T ., .; ■ .. ■ ■ X

It is well to note that number 2255 =  5.8 • 1076 is inconceivably large (larger, in fact, 
than the estimated number of all atoms in the universe) and that N  numbers could 
be denoted analogically to solar numbers up to 265535, but most of them would 
never become useful.

2.2. With numbers constructed in this way, the arithmetic invented for the decimal 
system disappears, a game emerges instead. A draught (checker)-board is needed 
and two sets of draughtsmen, say, white and black. A set of symbols to transcribe 
the game may be useful as well—if the course of the game is to be communicated 
to those not in a position to look on (as it is in chess-columns of newspapers). For 
the sake of conveniency the bottom row of squares to play on will be described at 
first—and with a slight modification in names. “Draughtsman” is much to long. 
“Man” would be better, but might have adverse implications (“white man”—“black 
man”). So let us call the pieces in game just “N ”. The rules of the game are simple:

1. A double N  on any square may be replaced by a single N  on the next left hand 
square.

2. Two opposite N  on any square cancel each other.
To make the game useful (or mathematical) it is only to set for the N  on the right 

hand comer square “one.” It is now apparent that integers from 1 to 255 in both 
colours can be played on the bottom row of squares of a draught-board. Any multi
tude of N  (shortly: MN) gives thus an integer, if there is a game (there may be the 
case of an empty board, which is obviously not a game, zero being thus excluded), 
but any integer may be played by some MN, For instance, the integer 63 may be 
represented as
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or

or

o o o o o o

o •

o • o e tc .

Because of this variety of representation players agreed upon playing MN  in a con
venient form called “number.” The meaning of “convenience” as here used might 
be described as “not diminishing the pleasure of play,” and it could be associated 
with the concept of “least effort,” since considerable effort in play diminishes plea
sure indeed.

Now, it is obvious that MN may join and disjoin. If there are two or more MN  to 
be joined, we play “junction” by simply putting them together

O O

_Q_

and transforming the resulting MN  according to the rules of the game into a con
venient MN called “number.”

This number is the integer 66, and the play has its analogue in the arithmeti
cal operation of addition 47+19 =  66. This, however, would be a very bad 
notation if used to transcribe the game. Instead we will use the solar notation

which clearly indicates that for the first MN  there

are N  on the sixth and fifth square, and an opposite N  (N) on the first square, and 
similarly so for the other MN. We may as well use the symbols of the natural number

system
? “

© -  © Q - © ©^" which give the place of

the square by the solar configuration of strokes, with the reservation that the first 
square (bearing “one”) is not counted.
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It is also seen in play that disjunction of an MN into two or more MN may be 
played by picking off some MN  from the initial one, or by joining opposite MN 
(MN), since “picking off” is just “cancelling of opposites.” It would as well be easy 
to show that variants of the game analogical to other arithmetical operations could 
be played—and in different ways.

If, foT instance, the MN  to join is q and the

“number” of junctions O O the game may be set

on the board as shown by the N  given in dotted line on Fig. 4. To play the 
game it is only to move the N  by a chess-bishop’s move on to the bottom and left 
hand edge of the board, and reduce the resulting MN  to the “number” shown by the 
JVin full line. With “dense” configurations of JVit is, however, convenient to carry out 
the reduction before reaching the edge of the board.

AJy- o Ü o
O 11; ^ 4

Ü - ;
o n n

m o //A o
i l m
o % o
iH m o m o

Fig. 4

The arithmetical analogue of this game is the operation 193-138 =  26634. 
Incidentally, it may be noticed that by building a “castle” of three N  in the upper left 
hand corner-square of the 82-square board products up to 216—1 or 65535 can be ob-

tained. The solar transcription of the game is 

but the natural transcription gives a better insight into the game
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Indeed, this transcription fits so well to the game that it might be played merely 
in symbols! This will be demonstrated by playing an MN  of junctions of another MN, 
with both MN containing fractional N  (obtained by a series of halvings of “one”).

The arithmetical analogue of this play is the operation 6.125-2.5 =  33.6875.
A closer look on the display of symbols will bring us to notice thàt this is a game, 

too, similar to the game of cards. With sequences of eight cards in the pack, numbers 
from ± 2 -8 to ± 2 8—1 could be played, with sequences of thirteen cards—num
bers from ± 2~ 13 to ± 2 13—1. And it would not be necessary to put the symbol on 
the card, since any convention on sequence and opposition would do perfectly well.

✓
This exercise of constructing a number system and its “arithmetic” shows that for 
certain sufficient large n a 2"- number system can be notated economically while main
taining the unique operational advantages of a 21 system and its suitability for com
putation on devices. If some such number system would be put at the beginning of 
a development which ended with the universal acceptance of the decimal-number ' 
system, the sexagesimal and duodecimal-number systems would perfectly fit into 
the process.

3.1. To transform decimal numbers into solar numbers the following simple pro
cedure could be applied. (The binary representation used below refers directly to both 
solar numbers and configurations of N  on an n2-square board.)

Decimal number of the second order of magnitude

cp- Ô (p —®

73 =  7(23+ 2 1)+ 3 111000 
+ 1110
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Decimal number of the third order of magnitude 
491 =  4 (26+ 2 5+ 2 2)+ 9  (23+ 2 x) + l  100000000

+ 10000000 
+ 10000 

+ 1001000 

+ 10010

+  . 1
111101011 =

For decimal numbers of the third order of magnitude the procedure becomes labo
rious and it will become much more so with numbers of higher orders of magnitude. 
A further deficiency is the infeasibility of an inverse operation to transform solar 
numbers into decimal numbers.

Now, let us consider the following arrangement of N  numbers

Every two successive numbers of horizontal alignment give the sum 2n+2+ 2 B — 5 • 2". 
The following sequence of multiples of ten is obtained: 2° • 10, 21 • 10, 22 • 10, 23 • 10, 
24 • 10 ,... A number of the decimal system is transformed into a number of the solar 
system by decomposing it into a sum of iV multiples of 10 and a rest <  10, and by per- 
formnig some further operations without any effort of memory.

On an n2-square board doubles of N  are set for 2" • 10 and are put into position 
2"(23+ 2 1) with chess-knight’s moves.

An inverse operation to transform numbers of the solar system into numbers of 
the decimal system is now possible; the result, however, may be obtained quicker by 
memorizing the position of elements (radii, N) giving sums equal to numbers result
ing from following relations:

128 32 8 2 
64 16 4 1

Example:

491 =  49-10 =  (25+ 2 4+ 2 °)-1 0 + l 101000000
+ 10100000 
+ 1010

(2) 2n+2+ 2 n =  5-2"
(3) 2"+4—2” =  3-5-2n
(4) 2'’+3+2',+2+ 2 n+1+ 2 n =  3-5-2n

Numbers:
5, 10, 20, 40, 80, 

15, 30, 60, 120, 240, 
as above
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(5) 2n+1+ 2 n =  3 -2"
(6) 2n+2—2"=  3-2"
(7) 2"+3+2" =  32 -2"

Example:

=  480+10+1 according to (4) and (2).

With some practice and numbers not exceeding several hundreds relations (2) to (7) 
may be conveniently applied to decimal-to-solar transformations as well.

Equations (3) to (7) give for n >  2 multiples of number 12. The duodecimal- 
-number system preserved in the concepts of dozen and gross as well as in weights 
and measures explains itself now as a mediating system linking the solar system with 
the decimal system. A peculiarity of this system is now comprehensible: it never 
functioned independently, but in association with the decimal system (Collier's 
Encyclopedia).

3.2. Consider the sequence ofnumbers: 2°, 2 \  22, 23, 24, 2° -20,21 -20,22 -20, 23 -20, 
24 -2 0 ,... In the Mayan vigesimal notation these numbers appear as

The system is better organized and more effective in transformations of its numbers 
into solar numbers compared with the decimal system, since transformations of 
numbers from 1 to 20 are easily made by heart, and numbers to be decomposed into 
a sum of N  multiples of 20 are only half as large.

Example :

.  = 491  =  24-20+11

=  (24+ 23) -20+11

With this advantage of a broader base, vigesimal numbers twice as large as decimal 
numbers can be easily transformed to solar numbers. A memorized decomposition 
of numbers larger than 27 would, however, become tiresome which limits the range 
of direct solar vigesimal transformations to about 2000. With number systems of  
still broader bases this range could be further extended.

101000000 
+  10100000 
+  1011 

111101011 =
%

3, 6 ,1 2 ,2 4 , 4 8 ,...
as above 

9, 18, 36, 72, 144,...

14 — O rg an o n  18
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3.3. Consider the following arrangement of N  numbers
128 64 32 16 

8 4 2 1
The sequence of (16—1)2” numbers provides the bases for easy-to-solar-transform- 
able number systems. They enable a memorized solar (16—1)2" transfor
mation of reasonable large numbers of the first order of magnitude and a direct trans
formation of numbers of the second order of magnitude. Relations (2) to (7) match 
perfectly with those bases and can be most effectively used. A transformation of 
numbers of those systems into decimal numbers is relatively simple. And there is 
the excellent divisibility of the (16—1)2" bases for n'^ 2.
Example of a (16—1)23 solar transformation:

(58.112)120 =  58-120+112=  1110100000000
-  111010000

=  58(27—23) +112 =  7072 +  1110000
1101110100000 =  .

l lO ll l ’OlOOOOO 
+  11*0111000
+ 11000 

l l io io ’l 110000 =  (58.112)120

but its explanation requires the laborious decimal expression 212+ 2 11+ 2 9+ 2 8+  
+ 27+ 25 =  212—28+ 28+ 211—27+ 27+ 29—25+ 25+ 28—24+ 24+ 27—23+ 23+  
+2* =- 2s (27—,23)+ 24(27—23)+23(27—23)+2(27—23)+ 26+25+24 =  (25+24+  
+ 2 3+ 2 1)(27—23)+ 2 6+ 2 s+ 2 4 =  58 -120+112. It is now easy to notice that broad
er 10-2" bases such as 40 or 80 would lack some of those advantages. Moreover, 
they are psychologically adverse because of their increasing deviation from the 
actual N  numbers, and less convenient in transformations of solar numbers (the 
“inverse operation”) because of the proximity of 23 and 21.

A possible vestige of the virtual base of those number systems is a special term 
for number fifteen found in some languages (for instance, the German Mandel).

A (16—l)22-system is equivalent to tfie sexagesimal system of the Babylonians. 
This system has been operated as decimal-sexal and duodecimal-quinary system 
(preserved in our division of time) which would confirm the use of schemes (2) to (7) 
jn memorized transformations of numbers up to 60. The decimal-sexal notation of the 
Babylonians facilitated at the same time the transformation of sexagesimal numbers 
into decimal numbers. The directly transformable numbers of the second order of 
magnitude reaching up to 3599 were sufficiently large to solve most of the practical 
problems, and the positional relativeness of the Babylonian notation could indicate 
that this range of the system was used similarly to a slide rule technique.

The limit of memorized transformations extended up to (16—1) 23, a number

The inverse operation is simply
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system with number 120 as base is obtained. Vestiges of a duodecimal-decimal system 
preserved in the ancient concept of “hundred,” later “long hundred” equal to 120 
(Collier's Encyclopedia) might suggest that such a number system was actually used. 
Number 120 is to be understood as the base of a number system giving every number 
up to (27—23)2—1 as »2 • 12 • lO+zij, with nx, n2 transformed by heart (nx, n2 <  120). 
On a n2-square board solar (16—1)23 transformations are carried out mechanical
ly, since it suffices to play 128 as 120+8, or 120 as 128—8.

3.4. The transition from the 2"-number system to the decimal system hardly discern
ible in mathematics is petrified in physical units. Described in mathematical cate
gories it is little more than a speculation, here it is still a reality. And this difference 
in “actuality” is comprehensible. Physical units are extremely stable and conserva
tive—the present troubles of the Anglo-Saxons remind us of that convincingly enough, 
but much more so must it have been in a world of restricted communication. The 
metric system consolidated historically late. “The essentials of the system were em
bodied in a report made to the French National Assembly by the French Academy 
of Science in 1791. The metre, the unit of length was to be the one ten-millionth part 
of the meridional quadrant of the earth ... It took many years for the metric system 
to be adapted as obligatory in France. Its progress in most other countries has also 
been slow.” (Encyclopaedia Britannicd), and the predominance of the decimal num
ber system is here not so clear as in mathematics. Units concordant with the 2" 
number system and later transition number systems are still successfully in use or 
remain in the living memory of peoples.1

A theory should explain the initial facts which have led to its creation and embrace 
a number of other facts into a consistent entity. A lucky theory reveals sometimes an 
unexpected meaning in facts and discovers new fields of investigation. A few theo
ries have ruined our understanding of the world.

4.1. The practicable solar 5± decimal transition systems (including the (4+1)2”- 
-systems) are the following:

Systems (8) and (9) have been discussed. Systems (11) giving the lowest multiple of 
10 as high as 510 seem already inconvenient. Systems (10) have been used. A 260-day

1 However, one could ask: “For how long?” A table of non-metric physical units in the Ency
klopedia cited earlier has not been reprinted in a later edition. The board o f editors have probably 
found it obsolete. This reminds us of the trivial fact that a civilization in progress not only produces 
information, but also loses information with the passing of time. The “to be or not to be” of a theory 
as here presented can well be a question of a few years’ time.

(8)
(9)
(10) 
(11)

(4+1)2” =  5-2” 
(16 -1 )2” =  3-5-2” 
(64+1)2” =  5-13-2” 
(256-1)2” =  3-5-17-2"
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Sacred Year used by the Maya of Central America in chronological and astronomical 
calculations (Thompson) corresponds with the base of a transition-number system 
we describe as (64+l)22.

This coincidence could bear the evidence of a 2"-number system in prehistoric 
cultures. It could arrive from a discovery of 2"-denoted numbers or from a discovery 
of physical units concordant with the (64+l)2"-number systems, or, indirectly, from 
a better understanding of the chronology of the Maya. Unfortunately, a “better 
understanding” requires here a substantial reconsideration of the object under 
investigation. The problem therefore will be discussed in the final paragraph of this 
work. There are, however, facts marginally described in science or merely noticed 
which explained in terms of this theory gain in Significance while not requiring the 
painful effort of reconsideration.

4.2. Some numerals constructed according to a non-decimal scheme, such as “elev
en,” “twelve” are regarded as vestiges of the ancient duodecimal number system. 
There may well be deeper causes of the irregularity as in the French language the 
sequence of such numerals goes up to seize—2*. Irregular are also the French nu
merals for 70, 80, 90, regarded as vestiges of a vigesimal number system (preserved 
in some other languages as well—the English “score”). However,. Celtic, Germanic 
and Greek have also a break between 60 and 70 (Collier's Encyclopedia) and the 
crucial point could be 26.

The numeral “nine” is in many languages near to or homonymous with “new” 
as in novem—novus (Latin), neuf—neuf (French), neun—neu (German). It could be 
a remainder of an ancient understanding of “nine”—the new basic numeral in con
tradistinction to the solar number system which used only eight basic elements.

Another vestige of the solar number system might be the dual number occurring 
in certain linguistic families. A remark of the linguist J. Vendryes may here be quoted 
(Vendryes): “The use of the dual number must be regarded as reflecting needs differ
ent from those which could result from our mental habits. Today we see no reason 
to set duality against plurality.”

4.3. Many of the games we have inherited are essentially mathematical and can be 
used to carry out iV-calculations. Such are the board games draughts (checkers) 
and halma, such are, as well, dice, domino, and playing cards. “Checkers was played 
in the days of the earlier Pharaohs” (.Encyclopaedia Britannica) and there is an Old 
Egyptian legend telling of some such game played (by the god Toth to win the last 
5 days of the year for the goddes Nu (Milewska, Zonn). As for cards, it is known that 
‘‘early in the T’ang dynasty the Chinese had paper money which Chinese cards so 
resembled in design that their respective times of emergence could hardly have been 
long separated. Originally the cards and money may have been identical or, since 
in many societies gaming implements preceded money, either may with equal likely- 
hood have engendered the other” (Encyclopaedia Britannica). One might have
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thought that in those ancient times it was hard enough for man to survive. Was it 
a play-time? There is perhaps a hint in the legend connected with the creation of 
chess telling of a reward of wheat grains doubled on each square of the board.

4.4. The Babylonians used three signs to denote their numbers: 1

as 1-60+4-10, with 4 t>—  identical with the solar number.

One of the Greek notations of numbers (the so called Herodian notation) denoted 
5 by F , identical with the solar number.

4.5. The greatest peculiarity and enigma of Egyptian mathematics is its theory of 
fractions (Wilkosz). The Egyptians represented any fraction as a sum of unit frac
tions 1/« and performed arithmetical operations on fractions only after having 
brought them to that form. To facilitate the reckoning with such fractions (carried 
out mainly by doubling) tables were used giving fractions of the type 2/n (for odd 
n up to 101) as a sum of unit fractions (Historia matematyki) like 2/5 =  1/3 +1/15; 
2/7 =  1/4+1/28. The principle by which fractions are decomposed to unit fractions 
is obscure. It is known that a fraction could not be given as a trivial sum of equal 
unit fractions, and that among several possible representations always one and the 
some was chosen. Representations like 2/5 =  1/5+1/5 or 2/5 =  1 /4 + 1 /1 2 +  1/15 are 
thus excluded. It might seem that the idea of this method was to extract the main 
part of a fraction. Now, “division,” though played on a board easy enough in com
parison with our “arithmetical operation,” is not as easy as “multiplication,” ^-frac
tions (analogical to decimal fractions) are played in multiplication just as integers, 
and fractions of the mjn type being only proposals of a play can not be played at all. 
To play “division” it would be thus convenient to use tables of reciprocals which, 
incidentally, give short periods easily learned by heart, as explained by the binary 
expressions on the right (the stroke over “1” denotes subtractive units):

1/3 =  1 /4+  .. .  =  0.01010101 ...
1/5 =  1/4 — ... =  0.010T010T.,.
1/7 = 1  /8 +  ... =  0.001001001001...

1 /9 =  1/8 -  ... =  O.OOlOOÏbOlOOf...
1/11 =  1/16+ 1 /3 2 -  ... =  0.00011000ÏÏ00011000ÏT... 
1/13= 1/16+ 1/64 +  ... =0.000101000101 ...

10 J 100 .  The signs are identical

with the correspondent solar numbers. The sign
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1/15 =  1/16+ ... =  0.00010001 ...
1/17 =  1 / 1 6 - . . . =  0.00010001 ...

etc.
As long as multiplications with such solar reciprocals are played on a board the manip
ulations and the estimate of accuracy are easy. With the written “doubling” tech
nique an initial diminishing of the number of terms in the sum of reciprocals would 
become a necessity. The Egyptian method seems to take advantage of a possibility 
which might have revealed itself with the use of the decimal system, namely, that any 
m/n fraction can be expressed exactly by a finite sum of different unit fractions. 
Instead of 2/7 =  1 /4+ 1 /32+ 1 /256+ 1 /2048+  ... there would be 2/7 =  1/4+1/28. 
Thus, in case of an m/ra fraction with N  denominator the Egyptian method would give 
an N  representation. Such case has been quoted irk Wussing. For 21/8 =  2 5/8, 
the Egyptian algorithm is given as

1 - 8  
12 -  16
¡2 — 4 The point over 2, 4, and 8 is the hieratic sign denoting unit
/4 — 2 fractions.

" /8 — 1 The result: 2 + 2 + 8
The conclusion is that as the decimal system prevailed, iV-fractions were express

ed through reciprocals of decimal numbers, but within a still binary arithmetic. 
In categories of the decimal arithmetic the Egyptian method is extremely laborious— 
and absurd.

4.6. A binary interpretation of a solar number was given earlier. Another interpre
tation is possible: a solar number is a sum of 2" numbers denoted by individual 
signs. It is only to replace “2” by “b” representing the base of any number system, 
and the Old Egyptian, Old Chinese, Roman, and one of the Greek notations of num
bers: will comply with this definition. And then there is the binary character of Old 
Egyptian arithmetic, the incapability of using multi-unit figures found in the Egyp
tian, Babylonian, and Mayan notations of numbers, and the use of subtractive 
figures in Roman and Babylonian numbers. Curiously, these particulars added to 
our picture of ancient arithmetics as primitive science encumbpred with magical 
meanings (magic number seven, magic square).

4.7. “Zero” not used in,vV-mathematics is historically an astoundingly late invention. 
The Babylonians, who developed a positional number system, marked “zero” by an 
empty place between signs. This weakness of arithmetic contrasts strongly with the 
overall mathematical skill of the Babylonians which in some fields was surpassed 
only after three thousand years (Wilkosz, Bourbaki). One might say there was a re
luctance to denote zero. Was it so because the concept o f a “zero magnitude” was 
definitely alien to iV-mathematics? There is another reason to ask this question: 
the concept of a “zero magnitude” has created quite a specific mathematics—and
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quite a specific picture of the physical world, but it would require some thought to 
become aware of that.

One could object to all that has been said here, that with a number of facts avail
able it should not be difficult to pick out some of them fitting in to a theory. There is, 
however, an “invitingness” to facts and coherency in presentation which encourages 
one to a wider exploration of its possibilities. Technically it is certainly advanta
geous, since the facts the present paper embraces, have been hitherto explained by 
separate theories or presented as odd occurrences not meriting the trouble of thor
ough investigation. Would it prove its validity in confrontation with a scientifically 
established system? A breakdown of the theory would mean little, a breakdown of 
the system—very much. It should therefore be defended with all might.

5.1. The chronology of the Maya is based on two calendars:
“a) The 260-day Sacred Calendar (Aztec tonalpohualli, Maya tzolkin) was for 

ritual purposes only, and had nothing to do with astronomical phenomena. It was 
based on the numbers 1 to 13 and the 20 named days,, each of which had its own title 
and glyph. Every possible combination of one day with one number gives a total of 
260 pairings before the cycle starts all over again.

b) The Solar Year Calendar of 365 days, divided into 18 months each of 20 days 
plus a period of 5 'unlucky days.1

Any given day can be expressed in terms of both these cycles, and it will be 52 
years (i.e. 73 Sacred cycles or 52 Solar ones) before the two calendars are in phase 
again and the same combination is repeated. The 52-year period is called the Calen
dar Round.” (Bray, Trump)

Even such encyclopaedic information, which incidentally does not mention anoth
er chronological cycle: the 360-day tun governing the so called Long Count, gives 
an idea of the problems this chronological system unique by its redundancy has 
brought into being. One could, for instance, ask why the Maya should have chosen 
a Sacred Year of precisely 260 days, and as this period determines the cycle of 52 
Solar Years one might as well inquire about its chronological significance. According 
to the state of science the answer would refer to magic. Number 260 equals to 20 times 
13, and 13 is magical. Why magical? Well, there is the explanation that it perhaps 
hints at an archaic lunar year of 13 months.2 This might seem dubious, but it shall

------------ r
2 Compare with Schlenther, pp. 89-90: “Die sich immer wieder folgenden Zwanzig ergaben 

aber noch keine grössere fest zu fixierende Enheit. Aus diesem Grunde wurden in dem mesoame
rikanischen Kulturbereich die Zahlen 1-13 hinzugeführt... In der 13 haben wir wahrscheinlich eine 
alte kultische Zahl zu sehen, vielleicht symbolisiert sie die dreizehn Monate eines alten Mondjahres ...
So kam es aber auch, dass man die verschiedenen Zeiten des Jahres mit magischen Kräften in Ver
bindung brachte. In erster Linie waren es der Bedeutung nach Regen- und Feuchtigkeitsdämonen 
und die Winddämonen... In den zauberisch-animistischen Zeiteinteilungen galten besondere Zei
teinheiten als gut oder schlecht, und zwar nicht nur allgemein, sondern sie waren noch speziell 
unterteilt in Bezug auf Aussaat, Feldarbeiten, Ernte usw—  Die Zeitabschnitte liegen innerhalb 
der 260d des magisch-rituellen Kalenders. Er hat sich, so primitiv er war, bis heute erhalten. Er diente 
und dient ausschliesslich als Wahrsagekalender.” ’

)
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not be discussed seriously since the question itself by insisting on reason where there 
obviously is none, seems somewhat insane. Magic, as it is, stands firmly for the 
“unknown,” and as much is unknown in the chronology of the Maya a theory dis
pensing with magic is likely to meet with a rebuke. It may, however, convince that 
the chronology of the Maya can be coherently discussed in terms other than magic.

Plate 19 of the Codex Dresdensis (Thompson) gives multiples of 5, 10, ,15, 20, and 
further intervals of 5 up to 60 of number 584, followed by 65,130,195, and 260 mul
tiples of the same number, remarkably close to the synodical revolution of the planet 
Venus averaged at 583.92 days. The cycle of 584 days falls in phase with the 365-day 
Solar Year each 8 such years, and with the 260-day tzolkin every second Calendar 
Round which gives two vital relationships of the Maya chronology
(12) 8 ■ 365 =  5 • 584
(13) 2 • 52 • 365 =  2 • 73 • 260 =  65 • 584 =  37960

Number 260 has been deduced as the base of a solar decimal transition number 
system. Such transition system would fit as well to the vigesimal system used by the 
Maya. Both numbers 260 =  28+ 2 2 and 584 =  29+ 2 6+ 2 3 indicate at a common 
octal order as there is 28:22 =  (23)2 and 29:26 =  26:23 =  23. In fact, the relations
(12) and (13) are expressed in the octal number system as
(14) 10-555 =  5-1110
(15) 2-64-555 =  2 - 111-404=  101-1110= 112110 
or
(15') 2 - 6 4 - 5 5 5 =  111 • 1010 =  101 • 1110 =  112110

40000 4000 400
(16384) (2048) (256)
20000 2000 200
(8192) (1024) (128)
10000 1000 100
(4096) (512) (64)
4000 400 40
(2048) (256) (32)
2000 200 20

(1024) (128) (16)
1000 100 10
(512) (64) (8)
400 40

(256) (32) 4
200 20

(128) (16) 2
100 10
(64) (8) 1

Fig. 5
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Similarly to earlier demonstrations it might be possible to play the chronology of 
the Maya in a game resembling checkers ̂ n an octally arrayed 2" board as shown on 
Fig. 5. The values of the squares are denoted both octally and decimally, the former 
are given in parentheses. Draughtsmen are set for days, and the only rule of the

Calendar Round or 
52 Solar Years or 
73 tzolkins or 1 
65-1/2 synodic revo
lutions of the planet 
Venus, 18 980 days

5 Calendar Rounds 
or 260 Solar Years 
or 365 tzolkins,
94 900 days

Fig. 6

□ □ □
■ m ■
□ □ □ I
m m m
m ■ m
■ ■ ■

1 day

Tzolkin, 
260 days

Tun,
360 days

Solar Year, 
365 days

Synodic revolution- 
of the planet 
Venus, 584 days

8 Solar Years or 
5 synodic revolu
tions of the 
planet Venus, 
2920 days

• • •

• • •

8
• • •

• • •

• • •

w ¥
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game is that two draughtsmen on one square can be substituted by one draughtsman 
on the next “higher” square according to 2-2" =  2n+I. Chronological periods used 
by the Maya give the specific configurations of draughtsmen shown on Fig. 6.

According to Spinden time corrections calculated by the Maya “seem to have 
been one day in four years for short periods while for long periods they made 29 Cal
endar Rounds (1508 Solar Years or 550420 days) equal to 1507 tropical years.” 
The specific configurations of draughtsmen in mind suggest it would be convenient 
to compute periods of time, and in particular multiples of 4-year periods (configu
rations 6-8 on Fig. 6), by multiples of the single triad “synodic revolution of the planet 
Venus” instead of by multiples of the double triad “Solar Year.” Formula (15') 
shows this arithmetical feasibility as well.

The Maya estimate of the true year gives the expressions
(16) 1507 Zt =  1508 H 
and
(16') Zt =  //+///1507 '
wherein H—the Solar Year, Zx—a true year of 365.242203 days (the tropical year 
is actually 365.242198 days).

Number 1507 is divisible only by 11 and 137 which would give mathematically 
inconvenient periods for time corrections. If, however, we diminish the accuracy of 
the year to Z2 =  365,2420 days or to Z3 =  365.242308 days, two other formulas 
next to (16') can be given
(17) Z2 =  H+HI1508 =  H+HI29 • 52 =  H+KI4-12K/29 • 52
(18) Z3 =  H+K/4-12K/30 ■ 52 =  H +KI4-2K/C  
wherein H— the Solar Year, AT—day, C—260.

It follows from (17) and (18) that remarkably accurate time corrections are con
veniently calculated with multiples of 52 years. These periods expressed in terms of 
Calendar Rounds (R), tzolkins (C), “weeks” of 13 days (F) (the tzolkin divides into 
20 periods of 13 days), and days (K) would be according to formula (18)
(19) 52Z3 =  R + F -2 /5  K 

260 Z3 =  5R+5F-2K

\  . .  ..

1040 Z3 =  20R +C -SK  
With the less exact formula (17) the third term in (19) would be 8.28 K  for 1040 Z2.

All these periods as well as the 4-year periods within the Calendar Round by 
which time corrections would be undertaken are represented on the octally arrayed 
2" board by particular configurations ofthe triad “synodic revolution of the planet 
Venus” (configurations 6 to 8 on Fig. 6).

The Maya did not use a bissextile year. Glyphs inscribed on stelae qualified as 
“Secondary Series” give the number of days by which the Solar Year was ahead of 
the true year. There are also the so called “Supplementary Series” interpreted in terms
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of lunar months of 29 and 30 days. The same numbers appear in the denominators 
of formulae (17) and (18). This might invite reconsiderations, but with the scarce texts 
preserved the case does not seem very hopeful. More likely is the tracing of glyphs 
pictured within a 9-place-value square denoting numbers from 1 to 29—1.

Little doubt, on the other hand, is left on the chronological meaning of the tzol
kin. It determines the right periods by which time corrections should be undertaken 
(visualized by the vertical alignment in configurations 7, 8), and gives at once the 
periods of time by which the count based on the Solar Year should be corrected. As 
any given day is expressed in terms of both the Tzolkin Calendar and the Solar Year 
Calendar, this correction is readily reckoned within the former and the result can 
be immediately given in the latter. \

This property of the tzolkin chronology, which at first might be perplexing, results 
directly from its affinity to the 2" number system. The tzolkin differs by a 2~6 part 
from the solar number 28 =  256, and the periods given in (19) are exactly a 2~6 
part longer than periods equal to 27 years and to multiples of 27 years which would 
be used for time corrections within a solarly reckoned chronology to give a true year 
of 365.24187 days. If such periods were played on the octally arrayed 2" board, 
configuration 8 by losing a 2-6 part would be represented by the six upper draughts
men only. This affinity is in fact such that any number of days expressed in terms of 
Calendar Rounds, tzolkins, “weeks”, and days displayed on the octally arrayed 
2" board is directly legible as a solar number or an octal number of days. This can

4- 10s 4-107 4-106 4-105 4-104 4-103 400 40 4
(226) (223) (220) (217) (214) (211) (256) (32)
2 1 0 8 2 107 2-106 2-105 2-104 2-103 200 20 2
(225) (222) (219) (216) (213) (210) (128) (16)
108 107 106 10s 104 103 100 10 1

(224) (221) (218) (215) (212) (29) (64) (8)

Fig. 7

be shown by arraying the 2" board as on Fig. 7. The numbers are again denoted octal
ly, with decimal values given in parentheses.

The Calendar Round equal to 18980 days is now given by the following 
configuration of draughtsmen

Calendar Round

Let us consider, for instance, a period of 17 Calendar Rounds, 23 tzolkins, 15 “weeks”, 
and 2 days. On the 2" board given on Fig. 7 it would be set as follows
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I
1 +  16 =  17 Calendar Rounds

1+2+4+16 =  23 tzolkins

I 5+10 = 1 5  “weeks”, and 2 days

By assembling and reducing according to 2 • 2” =  2”+1 the resulting configuration 
gives the number

(1 010 000 010 010 000 101)2 =

=  (1202205)8 =  (328837)10 days

If it were now for this given period to calculate by how many days the calendar 
year of 365 days has run ahead of the true year, there would be according to (19) 17 
“weeks” minus 3-2+4/5 days for 17 Calendar Rounds. As for the remaining 23 
tzolkins, a relationship given in the Codex Peresianus (Thompson) could be used

(20) 5 F  =  7C

wherein H '—the period of 364 days, C—tzolkin. It gives about \S H' for 23 tzolkins 
which would require about 4 days to be added. The result is 16 “weeks” and 10 
days, or 218 days.

For a 2”-organized chronology this correction would be given by an expression 
as simple as

(21) T = H t - 2~2- H ,  ■ 2-

wherein T— time correction in days, H2—the solar number of calendrical years of 
365 days. It will be noticed that the arithmetical operation involves a subtraction 
only since the divisions are analogical to the shifting of a decimal point. With a 2”-
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organized chronology the tzolkin has obviously become meaningless. Not so the 
triad “synodical revolution of the planet Venus.” If it were to calculate the time 
correction for a given number of days K, the first term in equation (21) could be given 
conveniently as

(22) Hs -2-2 =  K/V-2/5 [days]

which could be played on the octally ordered 2" board due to the particular alignment 
of V =  584 =  (1110)8, or more generally, of number 73 and its 2" multiples. A si
milar alignment in the other direction gives surprisingly the period, of 7 days used 
in our chronology, but a period of 28 days occurs in the chronology of the Maya as 
well (Thompson).

With the decimal system the arithmetical operations of (21) would become more 
laborious (in fact, a simpler but rather crude rule has been chosen to obtain our so 
called Gregorian year of 365.2425 days), and it would be much more so with the 
vigesimal system of the Maya, who had to struggle with a multiplication table amount
ing to 400.

The conclusion is that the tzolkin made a 2"-organized chronology workable 
within the vigesimal number system.

Concepts of magic, rite, cult, etc. have not been used in this work. Some mathe
matical concepts of the theory here presented have been introduced instead. They 
added coherency to a chronological system displaying distinctive marks of perfec
tion in remainders hardly sufficient to permit a reconstruction. By admitting the pos
sibility of a lost perfection there is a risk of introducing logic where there was none. 
Yet, in my opinion, risk should be taken if the alternative is the adding of disorder. 
For a good reason. It is extremely difficult to make sense of absurdities, but easy 
to let order into chaos.
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