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A FORERUNNER OF CLASSICAL ELECTRODYNAMICS 

(An Historical Epistemological Approach) 

In the mid-19th century, progress in both mathematical and experimental 
physics indicated a synthesis of Classical Electrodynamics was imminent. The 
general framework of physical thinking developed to a point at which that 
landmark in the history o* Natural Science in the 19 th century became 
possible. By 1867, the synthesis had been accomplished, owing to the work of 
James Clerk Maxwell (1831—79) and, independently, to Ludwig Lorentz of 
Copenhagen (1829—91). The two gifted physicists had proceeded along very 
different roads. While Maxwell followed Michael Faraday's idea that electric 
and magnetic fields are primary entities of the physical reality under in-
vestigation to give this doctrine its perfect from, Lorentz continued along the 
line indicated by German mathematicians of Gottingen—Karl Friedrich Gauss 
(1777—1855), Wilhelm Eduard Weber (1804—91), but notably Bernhard 
Riemann (1826—66)—who put the concept of potential at the basis of a 
construction which turned out to be of mechanical inspiration. A mechanical 
model of electromagnetic phenomena employs of course some very useful 
concepts as variational calculus, Lagrange function, gradient, Laplacean, 
divergence, curl, scalar potential, vectorial potential, force, mechanical work, 
energy, momentum, etc. English physicists did not dispensed completely of 
mechanical representations of electromagnetic phenomena, for at that time 
Newtonian Mechanics wielded an all-inclusive sovereignty, firmly relying as it 
did on the Kantian apriorism of space and time and actio-in-distans doctrine of 
interaction. Whereas physicists on the Continent turned generally to mechanics 
of point-like bodies, trying to build-up a general electromagnetic theory based 
on a fundamental two-body interaction, the English tended to focus attention 
on the mechanics of continuous media, succeeding in carrying out their 
programme and reaching a satisfactory explanation which imposed aether (a 
concept borrowed from a Frenchman—Augustin Fresnel) as a physical 



260 N. Lonescu-Pallas, L. Sofonea 

reality—until the advent of Einsteinian relativity disproved that concept, at 
least in its classical formulation. It is in such hydrodynamic considerations, for 
instance, that William Thomson (Lord Kelvin, 1824—1907) as early as in 1846 
established a set of differential equations, now known as the Maxwell-Lorentz 
equations, which define the relationship between the magnetic induction vector 
B and the vectorial potential A. 

B = Vxl,(B = nil). (1) 

Maxwell called the vector A "electronic intensity." We have to point out that 
the two starting-points for the subsequent development of electromagnetic 
theory (proceeding either from twopoint-like-body interaction or from distur-
bances appearing in a certain fluid) did not exist exclusively in Britain and in 
the Continent, respectively. In fact, the "English" approach was applied by 
some physicists in Germany and France, and we shall see later that Bernhard 
Riemann and Ludwig Lorentz took advantage of both standpoints to pick 
valuable elements from both. The framework of research in Electrodynamics 
had become quite large by the middle of the 19th century, so we confine our-
selves only to some major findings to make it easier to understand the work of 
Riemann—the main subject of this study. The equation of electrostatic 
potential 

A(f> = -4ne/e * (2) 

was well known. It had been derived long time before, in 1813, by Simeon 
Denis Poisson (1781—1840), the outstanding French mathematician and 
mechanician of the Restoration Epoch. In 1843, Mich:« . Faraday—one of the 
most brilliant Anglo-Saxon minds—gave the first convincing experimental 
proof about the conservation of electrical charge. In modern terms, this result 
may be written as 

dA+ V j = o. (3) 

(Incidentally, electrical current density J, still considered a source of the 
vectorial potential, appeared in the explicit form 

J = qv (4) 

for the first time only in 1883 in Fitzgerald's report to a British Association 
meeting in Southport. This assertion, made by Edmund Whittaker [1], should 
be accepted with some reserve. Further investigations should be undertaken, 
say of Hermann von Helmholtz's papers who seems to have been the first 
physicist envisaging the concept of electron.) In a 1856 communcation to the 
Cambridge Philosophical Society, J. C. Maxwell presented Faraday's law of 
electromagnetic induction in a "local form" which is valid even now 

, P x £ + - - = 0. (5) 
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The same physical phenomenon of electromagnetic induction, was studied 
mathematically in 1857 by Gustav Kirchhoff of Heidelberg (1824—1887), who 
followed quite a different path, adopting the German School's structuralist 
point of view which gave prominence primarily to the concept of potential, 

n=~V*AcTt· ( 6 ) 

Kirchhoffs equation (6) leads to Maxwell's equation (5) if the Curl-operator is 
applied to (6) and is accounted for in virtue of Thomson's equation (1). Another 
remarkable German physicist and mathematician, Franz Neumann of Königs-
berg (1798—1895), arrived at equation (1) independently of Thomson in 1848 
at the same time establishing the equation of the vectorial potential of a steady 
distribution of electrical currents 

A A = -AtzhJ/C. (7) 

Formula (7) for the magnetism of steady currents plays a similar role to that of 
formula (2) for electrostatics. Since at such electrical currents the divergence of 
current density vanishes, that the divergence of the potential vector itself 
should vanish accordingly. So, accounting for the mathematical identity 

Laplacean (of a vector) = Grad · Div — Curl · Curl (8) 

and also for equation (1), we can transform equation (7) to obtain 
VxH = 4nf/c. (9) 

Equation (9), together with equation (5) were published by Maxwell in 1868. A 
mathematical consequence of equation (1) is 

V B = 0. (10) 

Today we would say this equation expresses the absence, in Nature, of free 
magnetic charges (i.e., charges existing outside magnetic dipoles). In Riemann's 
1854 physical mathematical papers we come across the correct form of 
continuity equation (3) but without its specification (4). Concerning the 
mathematical apparatus of the epoch, the operators Curl and Div. were 
frequently used by George Stokes of Cambridge (1819—1903), especially in his 
1849 Dynamical Theory of Diffraction. On die other hand, major contributions 
to the potential theory were made by Franz Neumann and Bernhard Riemann 
himself. To complete the picture of theoretical electromagnetism Riemann's 
times, we must mention the remarkable works about magnetic interaction 
between electrical steady currents undertaken by Ampere (1823) and Wilhelm 
Weber (1846), analysed by Riemann in his lectures on Schwere, Elektrizität und 
Magnetismus held at the University of Göttingen in 1858—63. His Vorlesungen 
(published posthumously by Karl Hettendorf in 1867) impress readers by their 
mathematical discipline and their quality in general, which were in no way 
inferior to the greatest theories of the time. Faraday's works, which seem to be 
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debatable to Riemann, and those of Neumann were equally well known to 
Riemann. Although we have no peremptory evidence of that at present, 
Riemann may well have been aware of the valuable works of Hermann von 
Helmholtz of Berlin (1821—94), perhaps the most brilliant mind among 
German physicists of the epoch, and of Rudolf Julius Emanuel Clausius of 
Bonn (1822—88), concerning interaction between electrical charges in motion. 

Now, let us try to assess cautiously Riemann's own role in his times, which 
eventually led to a synthesis of Classical Electrodynamics. Most textbooks of 
Electrodynamics today usually call the set of equations of the relevant branch 
of Physics as "Maxwell-Lorentz equations", which is likely to deepen the 
confusion between the two famous Lorentzes—the Danish Ludwig and the 
Dutch Hendrik. For convenience these equations are often referred to simply 
as "Maxwell's equations". Moreover, in the typical modern axiomatic manner 
of presenting electrodynamics other contributions, apart from those of Max-
well and Hendrik Lorentz, are sometimes left unacknowledged. So, students 
often get a confused picture of contributions made by some great physicists 
such as Ampère, Laplace, Gauss, Weber, Clausius, Volta, or even Faraday, L. 
Lorentz and Helmholtz. These circumstances are rendering our job of 
redefining Riemann's place and role in the history of Electrodynamics even 
more difficult. Of course, we have no intention of overestimating anyone in any 
epoch or country. All we want to do is to establish, along with the historical 
facts relating to a great discovery, all contemporary contributions to a 
problem, which were often left unfinished, not necessarily due to some built-in 
contradiction but to some fortuitous event either in the life of the person 
concerned (as was the case of Riemann) or in the process of accomodation to 
and acceptance of other unconventional ideas by the scientific community of 
the epoch (as was the case of Nilakanta's mathematical number e in mediaeval 
India). 

* The outcome of such a competition of contribution and the future of a new 
and revolutionary idea greatly depend on its discoverer's ability to put the idea 
in a logically convincing form, on his perseverance in promoting it and 
bringing it home to his contemporary scientific community, and also on the 
necessary links of the new element to the corpus of science in which it naturally 
belongs and to which it introduces the relevant information to meet what can 
be called "scientific demand." The difference between an inventor or discoverer 
and a forerunner is perhaps that the latter leaves his work in an incomplete 
version, indeed even in the fact that the forerunner, despite having completed 
his work, has little confidence in his own discovery and does not work hard 
enough to promote it in his own time. In such cases, the strong authority of 
commonly accepted ideas of the epoch, of the paradigms on which the science 
of the epoch relies, prevents the accomplishment of a revolutionary act. 

In Riemann's case, it was not his character or his intellectual scope which 
eventually prevented him from enjoying the glory which naturally comes in 
recognition of outstanding creative acts in Science—it was unfortunately his 
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bad health. A merciless disease, phthisis, struck him at the age of 37. Three 
years later, in 1866, when Maxwell and Ludwig Lorentz were widely 
acknowledged as great men of science, Riemann, still in the prime of life died of 
consumption. This happened in the same year in which he was elected F. R. S. 
His not-too-extensive body of work is essential to establish his place among 
the world's great mathematicians. Suffice it to mention just some common 
terms named after him: (maximally homogeneous) Riemannian space (with 
positive curvature), dzeta function of Riemann (in the theory of prime 
numbers), Riemann's curvature tensor (of fourth order), Riemann's conformal 
transformation (of the complex plane), etc. Riemann's electrodynamic theore-
tical contributions were largely as valuable guides for his successors, Ludwig 
Lorentz being the first to take advantage of it. But his scientific methodology 
and his basically heuristic approach are as valuable as ever and now, a century 
later, they are strikingly modern. His physicist's intuition was so profound that 
he often used it to simplify intricate problems of pure mathematics, without 
arriving—as Felix Klein remarked—at wrong conclusions. 

A study of the activity and mode of thinking of a forerunner of a great 
scientific discovery may be interesting from several points of view. It is not only 
necessary to "rehabilitate" Riemann as a requirement of objectivity in 
describing any aspect of general history, but also, and above all, to acknow-
ledge the great benefit for the philosophy of science, for the epistemology of the 
creative act in science. To illuminate unexplored facets of a great discovery, to 
penetrate intimately the nature of the thought, to scrutinize all circumstances 
objective and psychological, the scientist's attitude towards his own work, and, 
lastly, to carry to the end all unfinished approaches to establish the causes of 
a partial (or total) failure—all these in the light of modern research strategy, are 
undertakings of inestimable worth. 

Such critical penetrations of the history of science, based upon recon-
structions and historical and epistemological models, may be of great value for 
those responsible for scientific policy design in various respects (selecting 
candidates for research work, picking the most efficient of several possible 
ways towards a given objective, adopting a more tolerant attitude towards 
unconventional ideas). Such models may lead us to more coherent versions of 
some theories or demonstrations of obvious usefulness in instruction. Our 
investigation in mathematical analysis in mediaeval India is a case in point. 
The derivation of the number e we proposed in virtue of a historical and 
epistemological model composed of elements which existed (or virtually 
existed) in the epoch, has a definite advantage over the more common 
derivation procedure based on the limit ^ „ ( l + £)". While this limit is an 
expression of a social demand historically concretized in a "continuous 
interest," our derivation naturally stems from a necessity to develop mathe-
matical analysis. Apart from the demand, the quest for the limit appears as no 
more than a fortuitous inspiration and the student may be in some doubt 
about the logic behind the progress of knowledge. We hope that this brief 
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outline of reasons conclusively show that our interest in Riemann's work as a 
landmark in the history of Science is useful and may help the Present to learn 
from the Past for a better forecasting of the Future. 

Bernhard Riemann was born in 1826 in Germany. At the age of just 25, he 
received his doctor's degree at Göttingen University. His dissertation is now 
considered to be a fundamental contribution to differential geometry, general 
relativity and cosmology. In 1854, he wrote two studies on the subject of 
electrodynamics: Über die Gesetze der Vertheilung von Spannungselectrizität and 
Neue Theorie des Rückstandes in Electrischen Bindungsapparaten. The local 
form of the electrical charge conservation equation is used in both papers. Also 
in 1854, Riemann wrote his Habilitationsschrift, and was already regarded as 
one of the most promising young mathematicians. His masters included Gauss, 
Wilhelm Eduard Weber (1804—91) and Peter Gustav Lejeune Dirichlet 
(1805—59). The English philosopher Herbert Spencer (1820—1903) greatly 
influenced Riemann's philosophical position on evolutionism, unity of the 
universe and rationalist comprehension. A decisive turning-point in Riemann's 
scientific career came in 1859, when he succeeded Dirichlet at the Mathema-
tical Department of Göttingen University and begun his famous lectures on 
Gravitation Electricity and Magnetism (1859—63). By that time, he had 
demonstrated his remarkable talents as theoretical physicist and especially in 
electrodynamics; in 1858, he put forward, in a rigorous mathematical form, the 
idea of electric interaction propagating at the speed of light in empty space. 
That Riemann's approach can be seen not only from his adequate quantitative 
expression for the retarded action, but also from his intuitive choice of 
potential, and not force, as the primary physical quantity propagating at light 
speed. In Newtonian physics, of course, potentials are of subsidiary use as 
entities describing forces acting upon a certain body. This reversed order of 
priorities^ is a basic feature of Riemann's approach, which makes it entirely 
different from the alternative Maxwellian approach. His valuable contribution 
to Electrodynamics, regarding the equation of electrical potential 

eud2(b 
( i i ) 

was included in Ein Beitrag zur Electrodynamik presented to the Academy of 
Göttingen, a paper Riemann first withdrew but eventually published, still in 
1858, in "Poggendorf Annalen der Physik und Chemie" (vol. 131). Equation 
(11) embraces equation (2) of electrostatic potential as a particular case. We 
think it an elementary duty towards objectivity and a tribute to Riemann to 
call equation (11) "Riemann's equation of electrical potential." 

It is, perhaps, opportune now to make a digression on the high reputation 
Riemann enjoyed among German scientists long after his death, even in 
connection with his research in theoretical physics. In his opening address in 
Vienna on 27th September 1894, at a Meeting of the Society for Natural 
Sciences, Felix Klein (1849—1925) said: 
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Je dois vous prévenir d'abord que Riemann s'est beaucoup occupé, et d'une manière très 
suivie, de considérations physiques. Elevé dans la grande tradition dont les noms réunis de Gauss 
et Wilhelm Weber sont le symbole, influencé, d'autre part, par la philosophie de Herbert 
Spencer, il a toujour et à maintes reprises, travaillé à recherche d'une forme mathématique sous 
laquelle pourraient être exprimées, d'une manière unique, les lois auxquelles tous les phénomènes 
naturels sont soumis. 

To come back to Riemann's outstanding discovery formulated in equation 
(11), Riemann did not confine himself to the mathematical aspect, i.e. a formal 
generalization of equation (2). To include dynamic aspects in it, he embarked 
on an attempt to identify the very mechanism of the interaction propagation. 
The question Riemann presumably confronted was this: since potential is just a 
mathematical abstraction just what is really propagating at the speed of light? 
To answer this difficult question, he found himself compelled to introduce 
McCoulagh's idea of aether and to assume that interactional information 
propagates, together with the transverse wave of aether disturbance, at the 
speed of light. After along investigations, in 1861 he concluded that aether 
density is proportional to y/ëfi(t>, while aether current is proportional to 
c/y/eji-A. Writing a continuity equation to account for the conservation of 
universal aether, Riemann could then formulate another fundamental equation 
of classical Electrodynamics 

P * + S * - 0 . (12) 

Among physicists, this equation is known as "Lorentz's gauge condition." 
Indeed, Ludwig Lorentz obtained this equation in 1867 as part of a set of 
equations equivalent to those of Maxwell. Riemann's priority is acknowledged 
by Edmund Whittaker in his History of the Theories of Aether and Electricity 
(1953, vol. I, p. 291). Wittaker also points out in that book that Lorentz's own 
approach was in line with Riemann's reasoning: 

The procedure which Lorentz followed was that which Riemann had suggested in 
1858—namely, to modify the accepted formulae of electrodynamics by introducing terms which, 
though too small to be appreciable in ordinary laboratory experiments, would be capable of 
accounting for the propagation of electrical effects through space with a finite velocity (op. cit., 
p. 268). 

Two important points must be made: first, by discovering equation (12), 
Riemann was on the brink of synthesizing all classical Electrodynamics, which 
makes him virtually one of its founders; second, the method Whittaker outlines 
attributing it to Riemann is as valid now as ever, and many modern research 
areas, to mention but invariantive mechanics, indirectly benefit from it. The 
essential step forward towards a synthesis of Electrodynamics, in the Lo-
rentzian version, was to obtain an equation of the vectorial potential 
homologous to equation (11) 

A Â - f - w = ( 1 3 ) 
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Riemann did not accomplish this, but he was much closer to this decisive 
point than appears at a first sight. Indeed, by applying the D'Alembert 

operator to equation (12) • s A— , by reversing thereafter the order 

of operations and going back to equation (11), one obtains an equation 
comparable with the equation of charge conservation (3). Thus, as a direct 
consequence of eqs. (12), (11) and (3), and without adding other new concepts 
or conjectures, anybody with Riemann's mathematical background, and acute 
intuition and power of organizing of his facts was in a position to arrive at the 
intermediary equation 

At this stage of demonstration, a comparison between eqs. (14) and (7), of 
the same vectorial quantity but referring to the particular case of steady 
currents, gives the necessary psychological argument for accepting eventually 
equation (13) as appropriate for the vectorial potential, covering all the possible 
cases. In this way, the propagation at light speed of the vectorial potential is 
ensured as a product of the adopted procedure—an aspect of nature confirm-
ing the legitimacy of the approach. But Ludwig Lorentz, who probably did 
not know equation (12) (derived by Riemann in his 1861 lectures but not 
published before his death), followed a different road to arrive at equation (13), 
which was still framed in the Riemannian paradigm (to perform small 
amendments upon equations of mathematical physics in such a way as to 
promote some basic ideas systematically without coming into conflict with the 
corpus of empirical data of the time). In 1867, Lorentz wrote down solutions to 
eqs. (2) and (7) as three-dimensional integral representations, and ascertained 
that "retardation" of the sources was a necessary mathematical amendment to 
be made in view of Riemann's idea of propagation of electrical effects at light 
speed. In other words, the quantities q and / a r e to be taken in the integral not 
at the instant t, but at the instant iRet = t — ^/efi/cR, where R is the distance 
between an arbitrary point in space the coordinates of which are integration 
coordinates, and another arbitrary point in which we want to calculate the 
values of potentials. Thus, the speed of the afore-mentioned propagation turns 
out to be V = c / y / e j x . The correct expression of iRet was obtained, before 
Lorentz, by Riemann, in the case of electrical potential. The derivation of the 
field equations when the potential equations and the connections between 
fields and potentials are known is merely a question of some relatively easy 
mathematical transformations. For instance, equation (10) is a trivial 
consequence of equation (1). Equation (5) follows from equation (6) after 
applying the curl operator, if, in addition, equation (1) is taken into account. 
The derive the equation of electrical induction (Gauss, 1845?) 

(14) 

VD = 4ng, D = EÈ (15) 
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use equation (11) to which adequate terms are added and subtracted so that the 
vanishing quantity, expressed in (12), should be formed. Subsequent inspection 
of the definition of electrical field in terms of potentials (equation 6) leads to the 
expected result. Finally, to obtain equation (9) in a form holding for all cases 
take equation (13), consider operational identity (8), add and subtract adequate 
terms so that the vanishing quantity (12) should be formed, and eventually 
express B and E in terms of potentials [eqs. (1) and (6)]. The resulting equation 

V x = W/c (16) 
c at 

was first derived by Maxwell in 1868 and published in "Philosophical 
Transactions" (vol. 158, p. 643). That result brought glory on Maxwell, whose 
prestige rose still more when he discovered that the set of equations 
(5) + (10) + (15) + (16) is selfconsistent in the sense foreseen by Riemann, namely 
in propagation conjecture, opposed to the Newton's tacit assumption of "actio 
in distans," which was fully verified when Heinrich Rudolf Hertz (1857—94) 
demonstrated experimentally the existence of electromagnetic waves using an 
electrical oscillator devised and built by himself. While this great discovery of 
19th-century science is currently being associated with Maxwell and L. Lorentz 
Riemann's role as a forerunner should not be overlooked. It should be pointed 
out that L. Lorentz derived, in 1867, only the electrodynamic formulas for 
charges and currents in empty space, when e = n = 1. A generalization of this 
for e ^ 1, n T6 1 was a later step owed to many contributors (Maxwell among 
them). As soon as the complete set of field equations was written down the 
synthesis of Electrodynamics was accomplished. That, however, was a partial 
synthesis, because a complete classical picture of electrodynamic phenomena 
necessarily must include the behavior of point-like electrical charges in certain 
electric and magnetic fields. This second task proved, during the second half of 
the 19th century, even more difficult to perform than the first one. A complete 
synthesis of Electrodynamics was performed only in 1904, when H. Lorentz 
derived the force formula keeping his name 

fejM £+H-
It refers to a point-like body endowed with a rest mass m0 and an electrical 

charge q. At the beginning of the 20th century, not only H. Lorentz, but also 
Joseph Larmor and Henry Poincare arrived at a complete synthesis of 
Electrodynamics, anticipating in this respect the Relativity theory. But our job 
is to establish Riemann's contribution to the problem of motion of charged 
point-like bodies. In particular let us look at his thinking and methodology in 
that subject. In principle, formula (17) covers all possible cases of motion of 
point-like electrical charges. It may be derived by starting with a Lorentz 
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invariant action principle (as Max Planck did in 1906), whereby the contro-
versy over the actio-reactio principle in electromagnetic phenomena is 
explained away. However, due to the interaction propagation at a finite speed, 
potentials which enter expressions of fields depend on what are quite intricate 
functionals; in fact it is almost impossible to write down accurate and finite 
expressions for the motion equations. It was only in 1963 that Alfred Schild 
succeeded in deriving the Lagrange function of a relativistic rotator, made up 
of two point-like bodies with arbitrary masses and charges, and related to the 
frame of inertia center, as an analytical expression in terms of direct Euclidean 
invariants of motion. He used Maxwell's equations of electrodynamics and, 
after long and tedious calculations, managed to sum up the infinite series 
coming from the retardation effect. The mentioned invariants are all inde-
pendent Euclidean invariants made up of position (r t , r2) and velocity (v1, v2) 
vectors of the two point-like bodies, preserving this quality under three-
-dimensional space rotation, under the change of the origin of inertia frame by 
a constant vector, and under space reflection. There are altogether six of them: 

<*! = ivi, a2 = it?!, q = w1-t52> >7i = »1?, r}2 = v2-f, r = |r|. 

To come back to Riemann's epoch, the motion problem was entered upon 
at that time both via the force concept and the Lagrange interaction function, 
the second way presenting the obvious advantage of ensuring equality between 
action and reaction and the existence of the first ten integrals of motion. 
Riemann adopted a Lagrange function inspired by that of Weber, in which he 
replaced relative radial velocity by relative velocity. By this change you can 
obtain the same magnetic energy between two closed loops wandered by steady 
electric currents as those in Weber's original theory. The Laplacean axiom on 
such a loop and a magnetic dipole being equivalent was used by Weber, 
Riemann and Helmholtz, with a view to going over from an elementary 
interaction act between two charges in motion to the interaction of two circuits 
of current. Helmholtz was the first who adopted a linear combination between 
the functions due to Weber and Riemann, as a Lagrange function appropriate 
for a mechanical system of two point-like charges in motion. 

r _ g i f , K2 r •̂ Helmholtz — „ v ^Weber > „ „ ^Riemann — A. j + iv j • 

„ _L „ \ J h 3 l _U 1 qi<l2 V-= (m0 ia0 l + m02a2) — + 7 ^ — — x 
r L-e r 

The first term in the above formula is the classical kinetic energy, the 
second term is the static Coulombian energy, the third term (containing 
arbitrary constants Ky, K2) is the magnetic energy, while the last term is a 
corrective function following from theoretical considerations. By adequately 
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choosing the func t ion / we can ensure the inertial motion of the mass center of 
the mechanical system made of the two point-like bodies. There is no way 
around this requirement, because suppressing quant i ty /wi l l result in a small 
acceleration of the mass center. However, the structure of this quantity can be 
determined only after a definite option concerning theoretical mechanics. If, for 
instance, we accept the Newtonian Mechanics as a true and accurate theory of 
Nature, then at infinite interparticle separation the Lagrange function must 
reduce (apart from a constant quantity, irrelevant at this stage of analysis) to 
the partners' kinetic energy. Therefore, / must depend on or in such a way as 
for giving/(r = oo ) = 0, but, if must also vanish when one of the two charges 
goes towards zero. Finally, the imposition of inertial motion of mass center 
completely determines the function r 

The motion is thus described by some Euler & Lagrange variational 
equations coming from a Lagrange function L = L(u1,u2,Ç,ri1,ri2,r). The 
structure of this function is chosen so as to ensure the invariance of motion 
equations under Galileo transformations. The constant CE, called "electro-
dynamic constant" is, in this approach, not a universal but a specific constant 
assigned to electromagnetic interaction. At least formally, the possibility arises 
to reconcile the "actio-in, distans" character of Newtonian Mechanics with the 
finite speed of electromagnetic interaction as described by Riemann. But this 
consistency, accomplished within the framework of classical mechanics, soon 
turned out to be illusive. Indeed, if expression (19) is inserted in the Lagrange 
function for the noble reasons of saving the classical mechanics, then an 
additional eletrodynamic interaction is included which, however, does not 
vanish when one of the two velocities (v t , v2) goes to zero. 

Helmholtz, the theorist who carried up this research after Reimann's death 
along the road mapped out by Weber and Riemann, was the first to 
resolve—aware as he was of the contradiction—to suppress the quan t i ty / That 
was an open declaration of war on classical mechanics and the possibility for a 
new deep change in the science of mechanics was emerging. Was Helmholtz 
fully aware of his position? Was he realizing the necessity of changing the basic 
statements of theoretical mechanics? These questions are difficult to answer. At 
all events, further investigations are necessary if we are to conclude finally 
whether the contradiction of classical mechanics was explicit at those times or 
remained a latent logical contradiction to this day. 

But, for our epistemological purposes, even a logical contradiction suffices 
to lay a bridge between early investigations concerning the motion of charged 
point-like bodies and modern research on theoretical mechanics initiated by 
Octav Onicescu in Bucharest and developing the "invariantive mechanics" 
(working for v < c, v « c). Without being aware of Weber's approach, or of the 
investigations of Reimann and Helmholtz, Octav Onicescu developed an 
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entirely new theoretical Mechanics. In this form it was later possible to derive 
a correct formula for a two-body rotator before Schild by Nicholas 
lonescu-Pallas and Liviu Sofonea which extended the theory of Oni-
cescu — working out both a Lagrangean version and a Hamiltonian one —and 
finally, reaching accurate results equivalent to a rigorous formulation of 
relativistic analytical mechanics. The role of the limiting velocity is played in 
this approach by the electrodynamic constant CH, and Romanian physicist 
Dragomir Hurmuzescu's experiment establish accurately equality between the 
electrodynamic constant and light speed in empty space acquires fundamental 
importance. 

We can safely assume that Weber, Riemann and Helmholtz made "in-
variantive mechanics" avant la lettre. Coming back to formula (18), we have to 
suppress the quantity / of potential (interactional) origin and insert instead 
another quantity /, this time of kinematic origin. The form of this new 
corrective function may be foreshadowed by combining the kinematic cha-
racter of that quantity (which precludes from its structure any invariant 
connecting the two partners of the system, and, at the same time, prescribes to 
it an essential additiveness) with arguments from dimensional analysis. This, 
brings us to the formula 

/Non-Classical = O 0 l + m 0 2 ( 2 0 ) 

The inertia principle may thus be saved (i.e., the acceleration of the mass 
center may be avoided) provided that we give up the Newtonian concept of 
mass as a certain constant quantity and accept that body's mass may depend 
on velocity and on its interaction with other bodies. In other words, kinetic and 
potential energies of a body contribute to its inertia. By inserting expression 
(20) in (18), and by asking to comply with the inertia principle and to ensure the 
existence of all the first ten integrals of motion, we conclude that such a 
non-classical solution does exist, provided that the three dimensionless 
constants are subject to some restrictions, namely: Kt = K2, K3 = 1/2. Unlike 
the classical case, this time the avoidance of mass center acceleration 
proportional to CË2 does not remove accelerations in higher orders of 
approximations. Accordingly, the procedure must be taken over for deter-
mining corrective terms proportional to C^4 , CE

6, etc. Such terms can no 
longer be built up without interactional contributions. Summing up all kinetic 
terms from various orders of approximation is no special problem, but 
summing up all potential terms turns out to be an extremely complicated job. 
This is the reason why no such attempt, using the Maxwell equations and the 
Lorentz transformations, has been a success yet. Unlike this, the alternative 
procedure, relying on invariantive mechanics (the historical roots of which are 
to be found in the epoch of Weber, Riemann, Helmholtz, Clausius and 
F. Neumann) and on its synthetic approach (dispensing with intricate 
functionals resulting from retardation), can well produce remarkable results. 
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Other physical and epistemological results are obtained using the same 
methodology. A long way had to be gone from Riemann's 1858 study about the 
finiteness of interaction propagation to equation (21) obtained by Nicholas 
Ionescu-Pallas in 1977. Within this itinerary of thinking, which in the 
"historiography" was not completely persecuted, but which can be conceived 
and achieved in the epistemological-history (meta history) there are two 
decisive instants marked by two outstanding minds deserving full appreciation, 
namely Bernhard Riemann as a forerunner of classical electrodynamics, and 
Octav Onicescu, a founder of Invariantive Mechanics. Their lifetimes were 
surprisingly similar and are linked with a scientific problem of outstanding 
significance. 
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