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PTOLEMY, COPERNICUS, AND KEPLER ON LINEAR DISTANCES

Introduction
As is well known to experts, in the Almagest Ptolemy set the deferent 

radii for all of the planetary models at a constant length of 60 units, scaling the 
epicycle radii to that length. For Mercury and Venus, the epicycle radii are 
determined by their observed maximum elongations from the Sun at mean 
motion in longitude (measured by Ptolemy at 22;30 and 43;10 respectively). 
For superior planets the procedure is more complicated. The radius of an epi­
cycle cannot be fixed by means of oppositions because the epicycle radius is 
pointing directly at Earth. We can calculate an epicycle radius by choosing 
one observation at opposition and an additional observation where the superior 
planet is about halfway between opposition and conjunction. Ptolemy calculat­
ed the epicycle radii as follows: 39;30 for Mars, 11 ;30 for Jupiter, and 6;30 for 
Saturn. Each of the models, of course, also has eccentricities and equant 
points1.

In the Planetary Hypotheses Ptolemy provided a model of the cosmos 
based on observations and on an assumption. The observations led to esti­
mates of the linear distances between the Earth and Moon and Earth and Sun. 
In addition, he made the assumption that the spheres arranged around Earth 
were so nested as to leave no (or very small) empty spaces between the 
spheres. Because the space between the Moon and Sun was large enough to 
contain the spheres of Mercury and Venus, Ptolemy placed them between the 
Moon and Sun. Most astronomers followed Ptolemy on the ordering of the 
planets, but there were two well-known alternatives. Plato had placed them 
beyond the Sun. Martianus Capella, following the so-called Egyptian order­
ing, placed then in orbits around the Sun such that, as viewed from Earth, they 
made epicyclic motions around the Sun. Because of their bounded elong­
ations, Mercury and Venus were thought to move with the Sun, and hence had 
a zodiacal period around Earth of one year2.

1 See J. Evans, The History and Practice o f  Ancient Astronomy, Oxford University, Oxford 1998, pp. 367- 
369, where he describes the technique in detail. Note in particular his Table 7.4. The values that he provides can 
be used to arrive at numbers reasonably close to the numbers calculated by Ptolemy. For Mars, Evans provides 
the radius 0.65630. If we multiply that number by 60, the length o f the deferent radius, we get 39.216, approxim ­
ately 39; 13. Jupiter’s radius is 0.19220, which is equivalent to 11.532 or 11;32. Saturn’s radius is 0.10483, 
equivalent to 6.2898 or 6; 17.

2 See J. Evans, The History and Practice o f  Ancient Astronomy, pp. 358-359.
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Although the motions of all planets are linked to the Sun, most of the 
ancients ordered the superior planets (Mars, Jupiter, and Saturn) according to 
their sidereal periods. Ptolemy followed this convention. The order of the 
celestial spheres, then, was the Moon, Mercury, Venus, Sun, Mars, Jupiter, 
and Saturn. The sizes of the spheres were calculated in the following way .

The Moon’s distance from Earth was thought to vary between 33 Earth 
radii (ER) and 64 ER. The Sun’s distance was calculated to be between 1,160 
ER and 1,260 ER. Mercury’s minimum distance was the Moon’s maximum 
distance, 64 ER. Ptolemy calculated Mercury’s maximum distance by multi­
plying 64 by the ratio of greatest to least distance. See Table 1.

Table 1 
L inear Distances in Ptolemy

Absolute Distances of M oon and Sun
Least Distance Greatest Distance

Moon 33 Earth radii 64 Earth radii
Sun 1,160 Earth radii 1,260 Earth radii

P lanet Ratio of Least to G reatest Distance (rounded off)
Mercury 34 : 88
Venus 16: 104
Mars 1 : 7
Jupiter 23 :37
Saturn 5 : 7

(From: Almagest, IX-XI. Approximately: (R -  r -  e ) : (R + r + e), where R 
designates the deferent radius, r the epicycle radius, and e the eccentricity.)

Cosmological Distance Scale
Least Distance Greatest Distance
(Earth radii) (Earth radii)

(minimum distance x ratio = maximum distance)

Moon 33 64
Mercury 64 166 (64 x 88/34 = 166)
Venus 166 1,079 (166 x 104/16= 1,079)
Sun 1,160 1,260
Mars 1,260 8,820(1 ,260x7 = 8,820)
Jupiter 8,820 14,187 (8,820 x 37/27 = 14,188)
Saturn 14,187 19,865 (14,187x7/5 = 19,862)

(Source: J. Evans, The History and Practice o f Ancient Astronomy, 
_______________________ pp. 387-388)_______________________

1 See J. Evans, The History and Practice o f  Ancient Astronomy, pp. 384-392.
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The calculation of the greatest distance comes approximately from the 
addition of the deferent radius (always 60) plus the epicycle radius plus the 
eccentricity. The least distance comes from the deferent radius minus the epi­
cycle radius minus the eccentricity. For example, Mercury’s greatest distance 
is 60 + 25 + 3 = 88. The minimum distance is 60 -  23 -  3 = 34. Therefore, the 
ratio of greatest to least is 88 : 34. Multiply 64 by 88/34, and you get 166 ER 
as the maximum distance for Mercury. And so on with each sphere.

Copernicus
Copernicus himself suggests that he was obsessed with the failures of his 

predecessors, inconsistencies among astronomers about the ordering of the 
planets, and puzzles related to variations in the distances of the planets relative 
to Earth. Some experts have insisted that strictly astronomical and mathemati­
cal considerations led him to the heliocentric theory, but in my view it was 
qualitative, not technical, mathematical issues that led him to adopt heliocen- 
trism with its geokinetic consequences1. The technical mathematical parts 
show that the results are roughly equivalent to Ptolemy’s mathematical 
models. In other words, his major innovation was cosmological (heliocentric 
and geokinetic), for which merely qualitative mathematical considerations 
sufficed.

In Commentariolus (ca. 1510) Copernicus tells us that he accepted the 
ancient assumption that the motions of the heavenly bodies are to be account­
ed for by using spheres that move uniformly. As anomalies arose, combin­
ations of circles were introduced and became more complicated, and finally 
circles were postulated that violated the principle of uniform motion relative 
to their deferent spheres and even their own epicycle centers. As a conse­
quence, he began to search for a more reasonable arrangement of circles that 
would account for every apparent irregularity without violating the principle 
of uniform motion with respect to a sphere’s proper center. At this point, his 
account becomes vague, informing us that somehow he hit on models that 
worked better, provided one accepted his seven postulates.

It is likely that Copernicus was bothered by several problems. His object­
ion to the equant model did not lead to the heliocentric theory2. But that 
problem did lead him to focus on other irregularities in the motions of the 
spheres, the varying distances of the planets, and the disagreements in the 
ordering of the planetary spheres3. Copernicus’s acquaintance with Regiomon­

1 The m ost important representative o f the technical, mathematical route to heliocentrism, o f course, is N. 
Swerdlow, The Derivation and First Draft o f  Copernicus's Planetary Theory in: Proceedings o f  the American  
Philosophical Society  117, 6/1973, pp. 423-512, esp. pp. 425-431 & pp. 470-478. For a defense o f  the more 
qualitative analysis, see B. Goldstein, Copernicus and the Origin o f  His Heliocentric System  in: Journal fo r  the 
History o f  Astronom y 33, 2002, pp. 219-235. M. Clutton-Brock, Copernicus’s Path to His Cosmology: An 
Attem pted Reconstruction in: Journal fo r  the History o f  Astronomy 36, 2005, pp. 197-216, also defends the more 
technical approach, but he also introduces several intermediate steps and considers external circumstances. See 
also my Reflections on the Origin o f  Copernicus’s  Cosmology in: Journal fo r  the History o f  Astronomy 37, 2006, 
pp. 37-53. I also agree with many of the considerations in: M. Kokowski, C opernicus’s Originality. Towards In­
tegration o f  Contemporary Copem ican Studies, W ydawnictwa IHN PAN, W arszawa -  Kraków 2004, pp. 37-49.

2 As B. Goldstein, Copernicus and the Origin o f  His Heliocentric System, p. 220, rightly emphasizes.

3 Some of these complaints appear in Commentariolus', they are all clearly laid out in De revolutionibus I, 4.
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tanus’s Epitome of Ptolemaic astronomy (1496) allowed him to compare a 
variety of models and to examine alternatives, and to do so while concentrat­
ing initially only on the lengths of the radii of spheres1. The ratios and 
distances are shown in Table 1 .

In the course of comparing alternatives, he encountered or recalled the 
Capellan arrangement that necessarily placed Mercury closer than Venus to 
the Sun. That arrangement would have instantly suggested an explanation of 
(and not just account for) the observation of their bounded elongations. At this 
point, he may have calculated their sidereal periods, although it is also possib­
le that he saw at once that if Earth were in the third orbit, the result would be 
the same. Despite errors in some of his calculations, he saw that the sidereal 
periods for both Mercury and Venus were less than the Sun’s sidereal period3. 
A calculation of a sidereal period from a synodic period is shown in Table 2.

What struck Copernicus is the fact that the ratios of maximum to minim­
um distances for Venus and Mars are more than twice as large as those for any 
other planet. That fact combined with uncertainty about the ordering of the 
planets prompted him to consider alternatives.

Ptolemy’s lunar model inadvertently predicted that the Moon should 
double in size at the quadrature points. Copernicus’s double-epicycle lunar 
model avoided that consequence, but his solution did not necessitate heliocen- 
trism. What struck Copernicus about Ptolemy’s planetary epicycle models 
were principally three facts. First, all of the epicycles are large, and those for 
Venus and Mars are huge in comparison to the others. The epicycle for Mars 
is larger than that for the other superior planets because its retrograde arcs are 
the widest. The size of the epicycle for Mars also reflects the fact that its 
variations in distance are more than twice as great as those of other superior 
planets. Venus’s retrograde arc is larger than Mercury’s. Table 3 illustrates the 
comparison between Ptolemy’s and Copernicus’s ratios4.

1 See J. Regiomontanus, Epytoma Joannis de monte regio In almageslum Ptolomei (Venice 1496), facsi­
mile in: Opera collectanea, (ed.) F. Schmeidler, Milliaria, X, 2, Otto Zeller, Osnabriick 1972,

2 Copernicus did not know Ptolem y’s Planetary Hypotheses, but he could have derived the distances for 
the M oon and Sun and the ratios o f least to greatest distance from Regiomontanus’s Epitome, V, 20-21; IX, 1 
and 19; X, 3, 18, and 23; and XI, 7 and 16. Also, these or similar numbers appear in the theorica literature. See 
Campanus o f  Novara and M edieval Planetary Theory, Theorica planetarum, (ed.) F. Benjamin Jr. & G. J. 
Toomer, University o f W isconsin, Madison, W isconsin 1971, pp. 3 5 6 -3 6 3 .1 use Ptolemy’s numbers as tabulated 
by J. Evans for the sake o f convenience. See J. Evans, The History and Practice o f  Ancient Astronomy, pp. 387-388.

3 Copernicus calculated the sidereal period of Venus to be nine months (270 days) instead o f seven-and- 
a -h a lf months (225 days), and o f  Mercury to be 80 days in De revolutionibus I, 10, instead of 88 days, as he has 
it in Commentariolus. See Commentariolus, rev. translation and ed. E. Rosen, Complete Works, vol. 3: Minor 
Works, Polish Academy of Sciences, W arsaw 1985, p. 89. See B. Goldstein, Copernicus and the Origin o f  His 
Heliocentric System, p. 230, for his reconstruction of how Copernicus could have calculated the sidereal periods 
from the synodic periods. For the synodic periods, Copernicus could have calculated the numbers from Regio­
montanus’s Epitome, IX, Proposition 4, pp. 194-195 in the modem facsimile. For Venus he could have gotten a 
value o f 584.4 days. Regiomontanus, p. 195, says that Venus has five revolutions in eight solar years. 8/5 = 1.6,
I.6 x 365.25 = 584.4. Mercury has 145 revolutions in 46 solar years. 46/145 = .317, .317 x 365.25 = 115.78 
days. See Table 2 for a modem calculation o f the sidereal periods o f Mercury and Venus from these numbers.

4 For a more technically precise and detailed comparison, see N. Swerdlow & O. Neugebauer, Mathemat­
ical Astronomy in Copernicus's De Revolutionibus, Springer Verlag, New York -  Berlin 1984, I, pp. 471-479 &
II, p. 539, Table 12. Swerdlow and Neugebauer compute the mean distances for all o f the planets from the Sun in 
terrestrial radii: Mercury = 430, Venus = 822, Earth = 1142, Mars = 1736, Jupiter = 5960, and Saturn = 10,477. 
As they point out, Copernicus reduced the scale of the planetary system. On the other hand, because the epi-
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Table 2
Calculation of a Sidereal Period from a Synodic Period

I f  C o p e rn ic u s  a ssu m ed  th a t M ercu ry  and V enus are in fe r io r  
p la n e ts , then  to d e te rm in e  th e ir  s id e re a l p e rio d s  and w h ich  is 
fa s te r , we can use the  fo llo w in g  fo rm u la  w ith  Sn s tan d in g  for 
the sy n o d ic  p e rio d  o f  the  p la n e t and  Sd fo r its  s id e re a l p e r io d : 1 
= 1 /S d  -  1 /S n .

W e know  from  R eg io m o n tan u s’s E pitom e  tha t C opern icus could  
have c a lcu la ted  M ercu ry ’s Sn at 1 15.78. E a r th ’s siderea l perio d , of 
course , is 1 year or 365.25 days; th e re fo re , 1 15 .78 /365 .25  = 0 .317 .

(1) 1 = 1/Sd -  1/Sn; (2) 1 = 1/Sd -  1/.317; (3) 1 = l/S d -3 .1 6 ; (1/.317 = 3.16); 
(4) 1 + 3.16 = 1/Sd; (5) 4.16 = 1/Sd; (6) 4.16 Sd = 1; (7) Sd = 1/4.16; (8) Sd =
0.24 years; (9) Sd = 88 days (.24 x 365.25 = 88).

From Regiomontanus’s numbers for Venus, its Sn = 584.4 days. 584.4/365.25 
= 1.6. 1/1.6 = .625; therefore, Sd = 1/1.625.

Beginning at step 7 as above:
(1) Sd = 1/1.625; (2) Sd = 0.615; (3) Sd = 224.63 days (0.615 x 365.25 = 
224.63).
In Commentariolus, Copernicus calculated Mercury’s Sd as 88 days, and 
Venus’s as 7 and 1/2 months (7.5 x 30 = 225 days).________________________

Second, it struck Copernicus as obvious that Ptolemy’s circles have no 
unique center. Aside from the eccentric and equant models, the planets move 
around a point in such a way as to create the loops that account for retrograde 
motion. Third, the especially large variations in distance of Mars from Earth 
suggested to Copernicus that its approach and withdrawal from Earth could be 
caused in part by Earth’s motion. The phenomenon of bounded elongation 
means that Venus and Mercury must be closer to the Sun. Because Venus’s 
retrograde arc is larger than Mercury’s, he placed Earth’s orbit between the 
orbits of Mars and Venus. With Earth in a position between Venus and Mars, 
it would at times approach each planet and at other times withdraw from each 
planet. Knowing, as he did, the sidereal periods for Mars, Jupiter, and Saturn, 
and with his focus on the sizes of their radii relative to the Sun, he realized 
that Earth with its Moon would fill the gap between Venus and Mars. He then 
made the switch between Earth and Sun definite, placing Earth between Venus 
and Mars, and committed himself to the distance-period principle, that is, the 
distances correspond to the period of orbit. That settled the question about the 
order of the spheres1. See Table 3.

eyelets are so small, the spaces within the spheres are greater. The space between Saturn’s sphere and the fixed 
stars is indeterminate, but it has to be large enough to explain the absence of stellar parallax.

1 The ancients had calculated the sidereal period for Mars as 1.88 years, for Jupiter approximately twelve 
years, and for Saturn approximately thirty years. These numbers were available in G. Valla, De expetendis et
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Table 3
Comparison between Ptolemy and Copernicus 

The Ratios of Greatest to Least Distances
Mercury Venus Mars Jupiter Saturn
88 : 34 104 : 16 7 :1  37 :23 7 :5

Copernicus’s Orbital Radii and Sidereal Periods 
Mercury Venus Earth Mars Jupiter Saturn
0.376 0.723 1.00 1.523 5.203 9.234
88d(.24yr) 225d(.616yr) lyr 1.88yrs 11.86yrs 29.46yrs

(The figures approximate the results in De revolutionibus V, 9-30)

By means of a simplifying approximation, we may compare ratios of maxim­
um to minimum distances for each planet. For Copernicus we measure the 
maximum and minimum distances from Earth with Earth-Sun distance set at
1, and leave aside his eccentricities to simplify the comparison.

Ptolemy
Mercury 88 : 34 = 2.59. 
Venus 104 : 16 = 6.5. 
Mars 7 : 1 = 7 .
Jupiter 37 : 23 = 1.61. 
Saturn 7 : 5 = 1.4.

Copernicus
Mercury 1.376:0 . 624 = 2.21. 
Venus 1.723 : 0.277 = 6.22. 
Mars 2.523 : 0.523 = 4.82. 
Jupiter 6.203: 4.203 = 1.48. 
Saturn 10.234 : 8.234 = 1.24.

Copernicus does not actually compute the distances, although they can be 
derived from the ratios of each planetary sphere’s radius to the radius of 
Earth’s sphere. If we consider only the size of the epicycle for Mars and its 
deferent radius, however, the ratio in Ptolemy’s model is 99.5:20.5 = 4.85. 
The significance of Copernicus’s ratios, however, is not so much their differ­
ences, slight in most cases from Ptolemy’s, but the explanation for the greater 
variations for Venus and Mars. The closer the orbit of a superior planet is to 
Earth, the greater its retrograde arc. Venus’s retrograde arc, a function of its 
bounded elongation and its approach to Earth, is greater than Mercury’s._____

Because the stars (sidereal periods) became the reference for the motions 
of the planets, he committed himself to an axial rotation of Earth, putting the 
fixed stars to rest1. Finally, he adopted a number for Earth’s orbital radius (25 
units), using it in Commentariolus to scale the radii of the planetary spheres2. 
The results are shown in Table 4, a summary of Uppsala Notes, fol. 284v.

fugiendis rebus, Venice 1501, f. sig. bb7v, lines 12-13, a  copy of which we know Copernicus used. The copy 
that he used has unfortunately disappeared.

1 In De revolutionibus, Copernicus argues for Earth’s axial rotation before arguing for its orbital motion, 
but that may have been a rhetorical strategy designed to coax readers towards acceptance of its orbital motion. 
We do not know which he adopted first.

2 See N. Swerdlow, The Derivation and First Draft o f  Copernicus’s Planetary Theory, p. 442 for an ex­
planation o f Copernicus’s simplification o f 26;28 to 25.
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Table 4
Copernicus’s Calculations in Uppsala Notebook

In Uppsala Notebook, f. 284v (also identified as f. 15v of the notes 
themselves), Copernicus calculated the radii (semidiameters) of the planetary 
spheres according to two units. At the top of the folio he used 10,000 units to 
represent the radius of a planetary sphere, and compared it to the size of the 
planet’s eccentricity, that is, the Earth’s orbital radius relative to the planet’s 
orbital radius. In the bottom half of the folio he compared planetary orbital 
radii to Earth’s orbital radius scaled to 25 units.

Scaled to 10,000 units, the planet’s Scaled to 25 units, the planetary 
orbital radius to the eccentricity orbital radius to Earth’s orbital:
of planetary model or Earth’s 
orbital radius:

Mars = 6583 10,000:6583 = 1.52 Mars = 38 38:25 = 1.52
Jupiter = 1917 10,000:1917 = 5.22 Jupiter= 130 130:25 = 5.2
Saturn = 1083 10,000:1083 = 9.23 Saturn = 230 5/6 230.833:25 = 9.23

[Copernicus reversed the ratio for the inferior planets.]

[Venus = 7200 7200:10,000 = 0.72]* Venus = 18 18:25 = 0.72
Mercury = 376[0]** 3760:10,000 = 0.376 Mercury = 9 2/5 9.4:25 = 0.376

The eccentricity of the planetary model is in the left-hand column. In 
Copernicus’s system the eccentricity is equivalent to Earth’s planetary orbital 
radius scaled to 10,000. Note that the ratios correspond approximately to the 
ratios of the orbital radii in Copernicus’s system with Earth’s orbital radius set 
at 1: Mercury = 0.376, Venus = 0.723, Mars = 1.523, Jupiter = 5.203, and 
Saturn = 9.234.

* Venus is omitted at the top of the folio.
** The folio records two different numbers for Mercury’s eccentricity 2256, 
but in the left-hand margin appears 376. The first number is normed to 6,000, 
a variation of Regiomontanus’s Tabella sinus recti. The number in the margin 
is normed to 1,000, which I have changed to 10,000 for the sake of 
consistency.

(Sources: Copernicana 4, containing Tabule Alfonsi regis (Venice 1492), 
Tabula directionum perfectionumque (Augsburg 1490), Tabella sinus recti, 
and The Uppsala Notebook, ff. 270r-285v, Uppsala University Library; and 
De revolutionibus V, chs. 9, 14, 19, 21, and 27.)___________________
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Uppsala Notes, fol. 284v'.

1 For interpretations o f the numbers, see N. Swerdlow, The Derivation and First Draft o f  Copernicus’s 
Planetary Theory, pp. 478-480, pp. 492-493 & pp. 505-509; E. Rosen, Commentariolus, p. 107, n. 169; and L. 
Birkenmajer, M ikolaj Kopernik, Krakow 1900, pp. 202-210. The interpretation of the numbers and especially of 
the word eccentricitas from the upper part o f the folio is very complicated. Suffice it to say here that I have 
adopted Birkenm ajer’s and Rosen’s simpler analysis o f eccentricitas and the ratios. It is N. Swerdlow, however, 
who has explained the origin o f the numbers and how Copernicus used them to construct his models. According 
to Swerdlow, the numbers for the eccentricities are the sines o f the maximum equations o f the anomaly when the 
epicycle in Ptolem y’s model is at mean distance from the Earth and are proportional to the radii of the epicycles 
for each planet: Mars = 41; 10; Jupiter = 11 ;3; Saturn = 6;13; Venus = 46; M ercury = 22;5. Swerdlow’s inter­
pretation o f eccentricitas and the origin of the numbers reproduces the effect reported by Regiomontanus, 
Epitome XII, 1-2, where the radius o f the planetary epicycle on a concentric is proportional to the eccentricity of 
the epicycle model on the equivalent eccentric model. In Copernicus’s models, the radius of the epicycle is 
roughly equivalent to E arth’s orbital radius. In effect, the E arth’s orbital radius compensates for the large 
epicycles in Ptolem y’s models. Because Copernicus shifted from a constant value for the planetary orbital 
radius at the top o f the folio to a  constant value for Earth's orbital radius at the bottom of the folio, he compared 
a planetary orbital radius to an eccentricity equal to Earth’s orbital radius with a planetary orbital radius to 
Earth’s orbital radius, that is, R : e = RP  : RE, where R designates the deferent radius (10,000 units), e the 
eccentricity o f the planetary model (equivalent to the epicycle radius at mean distance and to Earth’s orbital 
radius scaled to 10,000), RP  the planetary orbital radius, and RE  the Earth’s orbital radius (25 units).
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Believing the apsides to be invariable, he thought a concentric system 
using double-epicycle models would work. From Regiomontanus’s Epitome 
III, Proposition 13, he could have concluded that the apsidal line moves, 
which he may have confirmed by observation in 1515 and a calculation in 
15161. In 1515 a Latin edition of the Almagest was printed, which provided 
him with more useful data. In any event, the discovery of the variability of the 
apsides led him to question double-epicycle models for the planets, retaining 
the doubleepicycle model only for the Moon and settling on single-epicycle, 
eccentric models for the superior planets2.

With respect to strictly natural-philosophical or physical assertions in 
support of Earth’s motions, perhaps his most important conclusion was his 
rejection of Aristotle’s assumption that elemental motion is a simple motion. 
To Copernicus that assumption was obviously arbitrary and a case of assum­
ing what has to be proved. Copernicus’s understanding of the principle of 
relativity of motion made it clear that the motions that we observe are 
appearances, and that without a privileged position or some fixed point of 
reference, we cannot tell whether Earth or Sun is moving. Copernicus’s 
reasons for assuming Earth’s motions, however, are partly astronomical and 
partly cosmological. He devised the physical arguments after concluding that 
Earth moves. Once he adopted its axial rotation, then it was clear that heavy 
bodies have a compound, not a simple, motion as they fall3.

With those brief comments, let me return, then, to the cosmological 
considerations, as expressed in De revolutionibus I, 4. The celestial spheres 
move in circles and move the bodies in them. Copernicus proceeds to enumer­
ate difficulties with these general principles4.

The numerous celestial spheres have many motions with the daily motion 
of the entire universe the most conspicuous. Second are the proper motions of 
the Sun, Moon, and five planets, which motions differ from the daily motion 
in many ways. They move west to east through the zodiac obliquely to the 
equator; they appear to move non-uniformly in their orbits (first anomaly); the 
planets retrograde at times (second anomaly) and vary in latitude, sometimes 
nearer to Earth and at other times farther away.

A single orb cannot cause the observed non-uniformities. Their motions 
are uniform but appear non-uniform to us. There are two possible causes. 
Either their circles have poles different from Earth’s or the Earth is not at the

' See N. Swerdlow, The Derivation and First Draft o f  Copernicus’s Planetary Theory, p. 430, for the 
details, but he dismisses the possibility of using the observations to set a latest date for the composition o f the 
Commentariolus. On the observations of the Sun at the equinoxes in 1515, see M. Biskup, Regesta copem icana  
in: Studia Copernicana, vol. 8, Polish Academy of Sciences, W roclaw 1973, p. 65, no. 98, and p. 66, no. 99, a 
calculation made presumably on the basis o f an observation. As for the calculation of spring equinox in 1516, 
see p. 99. no. 102; it could not have been based on an observation of the Sun, for it occurred at 4 a.m.

2 Venus has an eccentreccentric without an epicycle, and Mercury an eccentreccentric with an epicyclet, 
but the function o f the epicyclet in the model for Mercury has a different function from those in the models for 
the superior planets. See De revolutionibus V for the planetary models.

1 See De revolutionibus I, 8.

4 I resort here and below to a paraphrase o f Rosen’s translation and the original by way of summary.
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center of the circles on which they revolve. The planets vary in distance, and 
their motions appear non-uniform in equal times because of their varying 
distances. He implicitly concludes that the planetary circles cannot have poles 
different from Earth’s, hence Earth cannot be the center of the circles on 
which they revolve.

In the subsequent chapters he draws the following conclusions1. The 
motions o f Earth cause the regular non-uniformities and variations in dist­
ance, thus eliminating or explaining some of the most peculiar non-uniform­
ities. As for his belief that the motions of heavenly bodies are circular or 
composed of circles, he is anticipating Earth’s motions. Earth’s rotation on its 
axis eliminates the diurnal rotation of the entire universe. Earth’s annual mot­
ion around the Sun explains the regularity of the seasons, the direct motions of 
all of the planets, and the planets’ varying distances from Earth. In short, he is 
far from mentioning the complications of the geometrical models but is rather 
content here to insinuate the Earth’s motions as providing an initial approxim­
ation of the solutions and explanations of the observed non-uniformities2.

To summarize the observational data, then, we need refer only to the 
following. The distances of the planets from Earth vary. For the planets that 
move with the Sun in the geocentric system, Venus’s retrograde arc is greater 
than Mercury’s. For the planets seen in opposition, the variation and the size 
of the retrograde arcs are greater the closer the planet is to Earth3. In other 
words, Mars exhibits the greatest variation and Saturn the least. Next, 
Copernicus knows that the Capellan arrangement explains the observation of 
bounded elongation. By calculating the sidereal periods of Mercury and Venus 
from their synodic periods, he realizes that Venus’s sidereal period is more 
than Mercury’s and less than the Sun’s. When he places Earth where the Sun 
is, the entire system falls into place. Even geocentrists had concluded that 
Mars, Jupiter, and Saturn follow the distance-period principle, yet the periods 
for Mercury and Venus were measured by the zodiacal period of the Sun, one 
year. That is the case if one places the Sun in the middle between the inferior 
and superior planets. But if one places Earth between the inferior and superior 
planets, then all of the planets follow the same principle. The reason for the 
variations in distance, in the sizes of the retrograde arcs, and the sizes of the 
planetary epicycles in the Ptolemaic system becomes clear. Earth is a planet, 
and the planets are arranged according to their sidereal periods.

Kepler
As I turn to Kepler, I focus in particular on the initial parts of Astronomia 

nova, and how they established a pattern for Kepler’s ideas about hypotheses 
and his use of data. His supposed need to lead his readers with him down

1 See De revolulionibus, I, 5 and I, 9 - 1 1.

2 In fact, in De revolutionibus V, 4, Copernicus proposed three alternative geometrical models for the sup­
erior planets’ motions around the Sun. Copernicus adopted a more pragmatic view of geometrical models than is 
sometimes thought.

3 Those facts alone might suggest that Earth is closest to Venus and Mars, as Copernicus emphasizes near 
the conclusion of 1, 10.
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every false path overlooks the dialectical and rhetorical purpose behind the 
trouble that he took to review all problems and survey all of the solutions, 
demonstrating their shortcomings1. The Astronomia nova also shows that Kep­
ler’s results depended on assumptions from physical forces2.

From his earliest known work on astronomy, the Mysterium cosmographi- 
cum (1596), Kepler began searching for the reasons or causes for the unique 
arrangement of the planets. Second, he concluded from Tycho Brahe’s 
calculation of commentary parallax that the celestial spheres assumed by 
Copernicus were non-existent. If there are no spheres, then what moves the 
planets and Earth’s moon around on epicycles and in their orbits? Of course, 
there was the alternative Aristotelian explanation of intelligences as movers of 
the planets. Kepler considered that explanation and retained a moving soul in 
his theory, but he quickly developed a suspicion about bodies moving in 
circles around geometrical points where no body is located. That is to say, 
epicycles no longer made sense, because they were no longer supported by 
any substance31. He also continued to use the geometrical devices for several 
years, but by 1596 he was already thinking of forces and speculating that the 
Sun may somehow be a partial cause of the planets’ motions, and that each of 
the planets has its own mover4.

We have to be careful about Kepler’s reliance on physical causes. For one 
thing, Kepler continued to appeal to formal causes in a roughly Aristotelian 
sense5. Second, he did not deduce his laws or results from his assumptions 
about physical causes. After he discovered the laws, he tried to show how they 
follow from his assumptions about physical forces. His search for a physical 
explanation, like several other assumptions, played a crucial role in his evalua­
tion of Copernicus’s theory and in his critique of geocentrism. Recent studies 
of Kepler have been largely in agreement about the role of physical principles

1 See Johannes Kepler, New Astronomy, tr. W illiam Donahue, Cambridge University, Cambridge 1992, 
especially his remarks on p. 4: K epler’s intention, as is shown in chapter 6, was to establish the perfect geo­
metrical equivalence o f  the three fo rm s o f  hypotheses in order to show that geometry alone cannot decide which 
is correct. This prepares the reader fo r  the climactic Part IV, in which the ‘fir s t  inequality’ (the inequality in the 
heliocentric longitudes) is treated fro m  physical causes and the author’s own ideas’.

1 See B. Stephenson, K epler’s Physical Astronomy, Springer Verlag, New York -  Berlin 1987, pp. 143—
146. They also depended on mathematical mysticism and animism. For a thoroughly systematic consideration of
religious and philosophical assumptions along with empirical data, see J. Kozhamthadam, The Discovery o f  Kep­
ler's Laws, University o f Notre Dame, Notre Dame 1994. For an account that focuses on the role o f archetypes 
in Kepler’s method, see Rh. Martens, K epler’s Philosophy and the New Astronomy, Princeton University,
Princeton 2000.

5 As Donahue explains in Kepler, New Astronomy, p. 7.

4 My account relies heavily on Stephenson, Kepler's Physical Astronomy and on Evans, The History and  
Practice o f  Ancient Astronomy, esp. pp. 427-443, on Donahue’s translation, and on J. Voelkel, The Composition 
o f  Kepler's Astronomia Nova, Princeton University, Princeton 2001.

5 See J. Voelkel, The Composition o f  Kepler’s Astronomia Nova, p. 4, who emphasizes the fact that Kepler 
referred to physical causes as metaphysical and cosmographical, such as the polyhedral hypothesis o f Mysterium  
cosmographicum. In addition, however, Kepler continues to refer to a m otive-force hypothesis. See Rh. M ar­
tens, Kepler's Philosophy and the New Astronomy, esp. pp. 99-111, where she rightly emphasizes the depth and 
structural relevance o f Aristotelian residues in Kepler’s philosophy.
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in guiding Kepler to his results1. In every account there is a different em­
phasis, but none discounts the importance of theory and physical principles in 
guiding Kepler to every conclusion and his major results. If the assumptions 
were right, Kepler believed, then the numbers should work out in detail2. In 
the Mysterium cosmographicum  Kepler obtained results that led him to 
suspect that Copernicus made minor errors in the values for the eccentricities 
and radii of the orbits. This is why Kepler needed Brahe’s values for eccen­
tricities and radii.

Precisely because Kepler was searching for a physical solution, he 
concluded that the line of apsides for all of the planets should pass through the 
body of the Sun, that is, the true Sun and not the mean Sun as in Copernicus’s 
theory3. What Kepler seized on was a peculiarity in Copernicus’s theory, that 
feature of it which was a remnant of geocentrism. Copernicus’s theory con­
tinued to grant Earth a privileged position. The deferent center of all planetary 
orbits is eccentric to the center of Earth’s orbit. The center of Earth’s orbit is 
the mean Sun, not the true Sun, yet Copernicus referred all motions to the 
mean Sun, that is, the line of apsides of all the planets pass through the mean 
Sun, the center of Earth’s orbit. See Figure 1.

Figure 1. Copernicus’s Illustration of a Superior Planet 
(Source: On the Revolutions V, 4. tr. F. Rosen, p. 243)

1 Stephenson is the clearest on physical principles in this regard, but Martens shows how archetypal 
principles constrained Kepler’s choices. Kozhamthadam also shows the interaction between the philosophical, 
religious, and empirical parts o f Kepler’s method.

2 See J. Evans, The History and Practice o f  Ancient Astronomy, p. 429, and J. Voelkel, The Composition o f  
K epler’s Astronomia Nova, p. 6.

3 See D onahue’s translation, New Astronomy, p. 48.
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Kepler rejected this exception, insisting that the lines of apsides should all 
pass through the true or apparent Sun, and concluded that Earth must be 
treated in exactly the same way as the other planets1.

This step alone is sufficient to make my point about the role of physical 
principles in Kepler’s method. Nearly everyone prior to Kepler, even Coperni­
cus, had ignored the inconsistency between the geometrical models and 
physical principles2. They adapted the spheres of ancient astronomy to the 
mathematical models. Kepler’s rejection of spheres and his belief that motion 
required a physical explanation led him to seek bodies as causes of motion. No 
physical relation can exist between two empty points; there must be real 
bodies3. But this consideration would have been pointless unless it had 
empirical consequences. Kepler studied very carefully the difference between 
a model constructed around the mean Sun as opposed to one constructed 
around the true Sun. If the apsidal line is placed through the mean Sun, the 
path of the planet cannot be located correctly. See Figure 2.

D

Figure 2. Relation between the Mean Sun and the True Sun 
(Source: A composite of illustrations from R. Martens, Kepler’s Philosophy, 

p. 72 and from B. Stephenson, Kepler’s Physical Astronomy, pp. 36-37)

1 Again, all o f  the recent accounts emphasize this point. Among the earliest to emphasize its significance 
was O. Gingerich, K epler’s Place in Astronomy in: Kepler: Four Hundred Years, (ed.) A. Beer & P. Beer, Vistas 
in Astronom y 18, 1975, pp. 261-278, esp. 264. See Donahue’s translation, p. 54, where Kepler responds to 
objections to the motions o f Earth.

2 See Rh. M artens, K epler’s Philosophy and the New Astronomy, pp. 58-60, where she is especially clear 
on this point. W e should add, however, that Averroes and homocentrists rejected the geometrical models as 
representations o f reality. Thomas Aquinas also displayed some reserve about the truth o f the models.

3 See, for example, J. Kozhamthadam, The Discovery o f  K epler’s Laws, p. 184, for now typical emphasis 
on this point.
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The decision to place the equant point on the line of apsides through the 
true Sun was not an empirical but a physical constraint that Kepler imposed on 
the model1.

Although not all of the astronomical models agreed perfectly on the 
angular measurements (longitudes), it was difference in linear distances or in 
altitudes that led Kepler to significant differences in longitude. Kepler needed 
Tycho’s data to get the eccentricities and the radii as precisely as Tycho’s data 
allowed. This is why I have concentrated on linear distances and on Kepler’s 
belief that the distances had to be grounded in physical principles in this 
paper2. What Kepler realized was that each model led to different results in the 
linear distances. And, to make a long story short, by concentrating on linear 
distances, eccentric equations, and the inverse relation between velocity and 
distance, he concluded that the force that he hypothesized emanated from the 
Sun also operated inversely to its distance from a planet3. By further analysis 
of distances he arrived at a simplification in the equal-areas law, and by 
focusing on the true Sun, distances, and eccentric equations, he arrived at the 
elliptical orbit.

There is an irony here, however. As we now know, it was not necessary 
for Kepler to have the correct physical principles or causes4. Simply postulat­
ing physical causes that required using the true Sun as a focus along with 
Tycho’s data led to the correct orbit. The role of data was both diagnostic and 
regulatory. Irregularities and inconsistencies made him suspicious of some 
data and some models. He checked every step in every derivation and every 
geometrical hypothesis against the data. Only in a loose sense would it be 
correct to say that he derived the first two laws from the data. The steps that 
led to the first two laws were intertwined with physical speculation that 
guided him to the next step, and even in the last stages he tried to make the 
results compatible with his physical hypotheses.

Conclusion
To explain variations in distance and other related facts, Copernicus 

proposed Earth’s orbital motion. Kepler concluded that variations in distance 
had physical consequences for which only physical hypotheses and physical 
principles could provide an explanation. Copernicus rejected geocentrism be­

1 See B. Stephenson, K epler’s Physical Astronomy, pp. 31-32, in particular here.

2 See Rh. Martens, K epler’s Philosophy and the New Astronomy, pp. 71-76.

3 See C. W ilson, K epler’s Derivation o f  the Elliptical Path in: Isis 59, 1968, pp. 5-25. Wilson argued 
forcefully that determination o f distance alone did not lead to the ellipse. Rather, distances and eccentric 
equations played complementary roles (p. 21). By eccentric equation is meant the amount that must be added to 
or subtracted from the planet’s mean position with the planet’s eccentric position on the line o f apsides. In other 
words, this is the calculation that results from the difference between adjusting the line o f apsides from the mean 
Sun to the true Sun. See Donahue, pp. 21-22.

4 See B. Stephenson, Kepler's Physical Astronomy, pp. 136-137 and pp. 202-205 for his insightful 
distinction between an unsound theory and the right kind  o f a theory, and his emphasis on the essential purpose 
that physical investigations served for Kepler in discovering the relations that we know as K epler’s laws. Later, 
in Epitome astronomiae Copernicanae (1618), Kepler appeals to causas probabiles. As we know, the term 
probabilis is ambiguous, sometimes meaning provable  sometimes plausible. It seems likely that Kepler means it 
in the dialectical sense as supported by the evidence and hence as worthy of approval.
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cause a stable Earth cannot explain the observations. Kepler rejected the 
residues of geocentrism in Copernicus’s theory because Copernicus treated 
Earth differently from the way in which he treated the other planets, attributed 
an incorrect eccentricity to Earth’s orbit, and failed to explain the motions that 
explain the observations. Yet, the correct physical principles or causes were 
not necessary; it sufficed to refer the orbits to the true Sun and to use Tycho’s 
data to reveal errors that led to the reform of all astronomy, and to confirm the 
correctness of his models.


