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Introduction 

The Radon transformation (RT) [Radon 1917], like its particular form 

Hough transformation (HT) [Hough 1962], is a well-known tool in image pro-

cessing, tomography, astronomy, microscopy etc [Toft 1996; Deans 1993]. The 

),(   RT defined as integral of image ),( yxg  alone the integration line s . The 

matrix presentation of RT is 

gWb                 

                     

),( ),(





 yxgg 


, (1) 

where JIW  is the system matrix (SM) with weight factors ji,  between 

j -th image pixels and each orientation i  of integration line s ; I – dimensional 

vector b  ( RTI  ) describes the parameter domain(PD); J – dimensional vector 

g  ( MNJ  ) describes the image; R  and T  are appropriately number of sam-

ples of   (the shortest distance from the source of the coordinate system to the 

integration line s ) and   (the angle between integration line s  and axis of ab-

scise); M and N  is appropriately width and height of the image.  

The discrete form of eq.1 is named beam sum. The full system of beam 

sums is a projection. The set of projections for ];0[    forms the PD. 

The elements of SM ji,  are calculated using one of these approaches: 

1) the weighted, when ji,  is calculated precisely; 2) the non-weighted, when 

ji,  in eq.1 is equal to 1 if the integration line s  cross the image element and 

ji,  is equal to 0 in other cases. Usually the non-weighted approach is used. It 

requires the extra approximation, and usually applicable in case of line segment 

detection [Toft 1996]. 
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The SM consists of 22 NNRTMN   elements. It’s very large. Also it’s not 

structured. The matrix is sparse and has around )(NO  non-zero elements for 

each integration line. It’s easy to determine that the number of non-zero values 

for line is less than 1)1( Nd , where d - dimension of the object (for imag-

es 2d ). 

For instance, the image of 100100  pixels requires calculation and storage 
810~  ( 6106.3~   non-zero) elements of SM, the image of 512512  pixels re-

quires 10108.6~   ( 8103.5~  non-zero) elements of SM. This requires essential 

resources even for modern computers.  

 

1. The Radon transformation scheme calculation symmetry properties 

Due to the method of fast calculation of RT uses scheme calculation sym-

metry properties let’s prove the existence of these properties. 

For square image NN  , where N  is even, the source of the coordinate sys-

tem coincides with the image center (fig.1). The samples of angels   and off-

sets of projection sums in these projections   are arbitrary. 

 

1.1. The central symmetry 

Let’s consider the central symmetry of SM elements for arbitrary angle  , 

where )45;0( 0 . The projection sums are calculated with the same value 

(modulo) of positive and negative displacement relatively to the source of the 

coordinate system. 

Due to fig.1, a 
'OMOM  
, where 

 2;0 N . 

For positive offsets the integration line forms the rectangular triangle 
ABC . For negative offsets it forms the rectangular triangle ''' CBA . 

It should be proven that  

 ''' CBAABC  ;  

 the appropriate lengths of the line segments of the integration line in the 

image elements are equal; 

 the coordinates of the line segments of the integration line in the image ele-

ments are determined using the same incidence matrixes for x  and y  coor-

dinates. 

1. ABC  is a rectangular rectangle with 090ABC . Let’s find the rest of 

angles. 

 ''OKE . The integration uses the same parallel displacement (offset), in 

other words ''| || |' ACACKK , whence  ''''' KLEOKEOLS . The line 

segments LO  and AP are perpendiculars to axis Oy . So APLO | | , whence 
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PAS . PAS  and OLS  are rectangular triangles. Since LSOASP   (the 

joint angle) and  OLSPAS , then PAS  and OLS  are similar due to 

theorem about similarity of the triangles about three angles with the same meas-

urements, in other words OLSPAS  . 

Since 090 CABPAS , then  090CAB . The sum of angles of arbi-

trary triangle equals 0180 , whence  

 CABABCBCA 0180   )90(90180 000 . 

2. Similarly the ''' CBA  is rectangular triangle with 090'''  CBA . Let’s 

find the rest angles. 

Since ''| |' ACKK , then  ''''' ALEOKE . For rectangular triangle 

''' LEA  ''''''180''' 0 ALELEAEAL  , whence  090''' EAL .  

Since ''| |'' CBLE , then rectangular  triangles ''' CBA  and ''' LEA  with 

joined angle  090'' EAL  are similar (due to the upper mentioned theorem 

of similarity) and  '''''' ACBALE . 

 

  
a) b) 

Fig. 1. The illustration for the proves of existence of central (a),  

rotational and rotational-mirrored (b) symmetries of SM 

 

3. So ''' CBAABC   due to theorem of similarity of rectangular triangle 

with acute angle (in rectangular ''OLS   '''' AELSOL  as joint-vertical 

angles). Since 'OMOM   and the image is square, then SOLOLS  '' and re-

spectively ''' CBAABC  . 

Let’s consider any point V , which is located on line segment AC  between 

two adjacent image columns. The point U  is the point on left image boundary of 

the perpendicular through point V  to the axis Oy . The point 'U  is the point on 
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right image boundary of the perpendicular through point 'V  to the axis Oy . 

Let’s consider AUV  and ''' VUA . ''' UVAAVU   are similar due to theorem 

about similarity of the triangles about three angles with the same measurements, 

in other words ''' VUAAUV  . Due to drawing ''VUUV  , in other words 

''' VUAAUV  . The last formula is correct for any parallel offset of point V  to 

the axis Oy  on segment AC .  

The same way we prove the existence of the central symmetry of the SM el-

ements of the integration lines with )90;45( 00 , )135;90( 00  and 

)180;135( 00 , which are located on the same distances from the image source. 

 

1.2. The rotational and rotational-mirrored symmetries 

It should be proven that the appropriate line segments in image elements of 

integration line are equal for any angle )45;0( 0 and they will equal for in 
4


. 

Also the incidence matrixes of appropriate coordinates will be equal too. 

Again the projection sums are calculated with the same value (modulo) of 

positive and negative displacement relatively to the source of the coordinate 

system. Due to fig.1,b 'OMOM   , where  2;0 N . 

For any positive offset the integration line with angle   forms rectangular 

triangle ABC  (fig.1, b). Another line with the same positive offset (relative to 

the source of the coordinate system) with angle 



2
 forms rectangular triangle 

''' CBA . It should be proven that ''' CBAABC  , the appropriate lengths of the 

integration line in the image elements are equal and the line segment coordinates 

are determined using the same incidence matrixes for x  and y  coordinates. 

1. ABC  is a rectangular triangle (as it was proven upper). 

2. The same way ''' CBA  is a rectangular triangle with 090'''  ABC . Let’s 

find the rest angles. 

Since ''| |'11 ACKK , then   0
1 90''''' CLEOKE . For rectangular trian-

gle ''' LEC  ''''''180''' 0 CLELECECL  , whence  ''' ECL .  

Since ''| |'' ABLE , then the rectangular triangles '''''' KELCBA   are similar 

due to theorem about similarity of the triangles about three angles. So,  

 090'''''' CABKLE . 

3. ''' CBAABC   are similar due to theorem of similarity of rectangular tri-

angle with acute angle. Since 'OMOM   and the image is square, then 

''' CBAABC  . 
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The same way as for central symmetry it could be proven 

1) ''' VUAAUV  ; 2) the existence of the rotational and rotational-mirrored 

symmetries of the SM elements of the integration lines with )90;45( 00 , 

)135;90( 00  and )180;135( 00  to the SM elements of the integration lines 

with )45;0( 00 , which are located on the same distances from the image 

source. 

2. The method of the fast calculation of the weighted Radon transformation 

The method of the fast calculation of the weighted Radon transformation 

(WRT) was proposed. In this method the SM elements are calculated as a length 

of the integration line in image elements. 

From the analysis of the geometry of integration it can be seen that for the 

arbitrary samples of offset and angles the line segments of integration lines s , 

limited by boundaries of the image elements, the coordinates of the beginnings 

and ends of these line segments, the lengths of line segments of integration lines 

s , limited by image sizes, and coordinates of the beginnings and ends of these 

line segments have properties of the central, rotational and rotational-mirrored 

symmetries. It should be mentioned again, that these symmetries are applicable 

for the image NN  , where N  is even and center of the coordinate system 

matches the image center. This allows to calculate and store less number of 

characteristics related to the geometry of integration. These characteristics are 

used by appropriate indexes. 

The integration lines of the same angle with the same displacement (offset) 

relative the image center form the SM elements. These elements have central 

symmetry, which allows to calculate geometrical characteristics only for positive 

and zero offsets. This allows to reduce number of necessary characteristics in 2 

times. The usage of the rotational and rotational-mirrored symmetries for differ-

ent angle samples )180;0[ 00 allows to calculate the geometrical characteris-

tics of the integration lines s  only for ]45;0[ 00 , which decrease the number 

of necessary characteristics in 4 times.  

The carried out researches have shown (fig. 2), that the usage of the sym-

metry properties in case of 2D interpolation of RT decreases the time of calcula-

tion in 2.8–5.7 times, in case of 1D interpolation it decreases the time of calcula-

tion in 2.4–3.6 times. 

To compare the existing methods of computation of RT and HT some re-

searches were carried out, in particular the dependence of time of calculation of 

PD as a function of image sizes for different interpolations of ),(   RT and HT 
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(this interpolations are described in [Toft 1996]) was measured. The results of 

researches are presented on fig. 3. The charts 1–4 match to different optimiza-

tion techniques of the nearest neighborhood interpolation of ),(   HT. The 

charts 5, 6 match to nearest neighborhood and linear interpolations of ),(   RT. 

 

  
Fig. 2. The dependence of time of calcu-

lation of RT as function of the image 

sizes for linear 2D (1,2) and 1D (3,4) 

interpolations of coordinates for exist-

ing (1,3) and proposed (2,4) approaches. 

Fig. 3. The dependence of time of calcu-

lation of RT as function of the image 

sizes for different methods of interpola-

tions of ),(   HT (1-4) and ),(   RT 

(5-6). 

 

Conclusions 

The new method of the fast calculation of the Radon transform with the us-

age of scheme calculation symmetry properties was proposed. It allowed to cal-

culate and store 1/8 characteristics necessary for calculation of the full systems 

matrix. The speed of calculation of RT was increased in 2.4–3.6 times for 1D 

interpolation of coordinates and in 2.8–5.7 times for 2D interpolation. The non-

weighted and weighted Radon and Hough transforms were implemented. The 

proposed method with the usage of the symmetry properties provides ability of 

the parallel calculation of 8 integrals. The implementation of this method in par-

allel systems will require minimal changes. It should be expected the increase of 

speed of calculation in 7.8 times compare to classic approaches. The theoretical 

increase of the speed in 8 times is not possible due to usage of several extra op-

erations for determination of coordinates of current image elements. 
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Abstract 

The method of the fast Radon transform calculation whith uses properties of 

symmetry has been proposed. The scheme calculation symmetry properties were 

investigated. It allows to calculate less number of necessary characteristics. The 

carried out researches have shoun affectivity of proposed method, with essential-

ly alloved to decrease time of Radon transform calculation. 

 

Key words: transformation, integration line, rotational-mirrored symmetries, 

system matrix. 

 

Metoda szybkich przekształceń Radona bazująca w obliczeniach na użyciu 

własności symetrii 

 

Streszczenie 

Zaproponowano metodę szybkiego przetwarzania Radona, która wykorzy-

stuje własności symetrii. Zbadano schemat własności symetrii. Pozwala to obli-

czyć mniejszą ilość potrzebnych charakterystyk. Prowadzone badania pokazują 

efektywność zaproponowanej metody, która pozwala zmniejszyć czas obliczenia 

szybkiego przetwarzania Radona. 

 

Słowa kluczowe: transformacja, linia integracji, obrotowa symetria obrazu, sys-

tem macierzy. 

 


