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THE EUCLIDEAN SP AT IV M 
IN FIFTEENTH-CENTURY MATHEMATICS 

In so far as geometry is conceived as the science of laws governing the 
mutual relations of practically rigid bodies in space, it is to be regarded as 
the oldest branch of physics. This science was able [...] to get along without 
the concept of space as such, the ideal corporeal forms - point, straight line, 
plane, length - being sufficient for its needs. On the other hand, space as 
a whole, as conceived by Descartes, was absolutely necessary to Newtonian 
physics. 

A. Einstein 

INTRODUCTION 

The study of the development of geometry in periods when it functionned (also) 
as "branch of physics", offers keys to better understanding of the 17th century 
phenomenon called the "scientific revolution", when the character of the relations-
hip, existing until then between geometry and physics, changed thanks to the 
Cartesian, analytic approach to Euclidean geometry. Descartes' achievement, 
however, was preceded by almost two centuries of the "premodern" (for the lack 
of a better term) investigations in mathematics and astronomy. In that way, the 17th 
century scholars had at their disposal mathematics that were the result of a par-
ticularly intense evolution since the early decades of the 15th century; for instance, 
the concept of the "unit segment", applied to the geometrical expression of 
arithmetical operations, was known a long time before Bombelli and Descartes 
made their own discoveries. The tension between arithmetic (and arithmetized 
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algebra), on the one hand, and geometry, on the other, that marked this evolution, 
revealed the insufficiency of Euclidean geometry (lacking in notion of the "space 
as a whole, as conceived by Descartes", according to Einstein), and incited the 
search for a remedy. 

* 
* * 

The term "space" did not exist in Greek mathematical thought. As for the 
Euclidean concept of what is called spatium in this paper, for lack of a Greek term, 
it points out the spatial relations between definite objects, expressed by means of 
relations between straight lines conceived as segments. Consequently, the Eucli-
dean spatium conceived as the Euclidean straight line Ei, the Euclidean plane E2 

and the 3-dimentional Euclidean solid Ез, is a sort of metrical expression of the 
form of the real, three dimensional, c l o s e d space being the subject of sensual 
experience. In the history of mathematics the term "l'intuition spatiale" is equally 
used in connection with Euclidean geometry for the sake of pointing to the 
peculiarity of the Euclidean spatium1. In any case, spatium in the Elements, as seen 
from the mathematical point of view, was a consequence of an earlier development 
of mathematics, and resulted equally from the Pythagorean concept of number, and 
from the answers to difficulties raised by this concept in mathematics. It became 
a challenge for mathematicians in the course of time because of the formal 
difficulties inherent in the Elements, such as the existence of the 5th postulate (the 
parallel lines postulate), and because of problems resulting from the "dimensio-
nality" of the mathematical entities (as inherited from the Pythagorean metrics)2. 

In this paper, the latter reason of troubles with Euclid's concept of spatium will 
be discussed. In fact, the development arithmetic and algebra in Italy in 14th and 
15th cent, brought forth mathematical expressions that could hardly be interpreted 
by means of three dimensional Euclidean models; it led, furthermore, to the 
extension of the concept of number such as to embrace also the negative numbers 
and incommensurable ones. When "Geometers" experianced difficulties in de-
aling with "non-Euclidean" or "non-Pythagorean" numbers, "Arithmeticians" 
hurtled against the insufficiency of the concept of spatium offered by Euclid. In 
the middle of the 15th century Giovanni Bianchini was among those who found 
themselves in these conditions (Simon Stevin, more than a century later, experien-
ced the same difficulties). The situation looked serious because, according to the 
stantards commonly accepted in classic, mediaeval and Renaissence science, what 
could not be proved geometrically was judged to be "not scientific". On the other 
hand, geometry itself was not free from evident incosistencies: there still persisted 
the traditional points of collision of arithmetic with geometry which resulted from 
the postulate of "homogeneity" of mathematical entities involved in arithmetical 
operations, when these operations were interpreted g e o m e t r i c a l l y (Elements 
II). Questions were then posed of "how to multiply a line times an area?" etc. As 
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it is known, a remedy to these incosistencies, and the proposition of geometrical 
interpretation of the "dimensions" of polynomials involved in arithmetical opera-
tions, came as late as in the 17th century, with Descartes' La Geometrie and Pierre 
de Fermat's Ad locos pianos et solidos isagoge and his Novus secundarum et 
ulterioris ordinis radicum in Analytics usus. Earlier, the "multidimensionality" of 
space or "multidimensional geometric interpretations" of algebraic expressions 
were proposed by Renaissance mathematicians, beginning with Luca Pacioli, 
Christoff Rudolffand Michael Stiffel3. 

* 
* * 

Research on the 15th century "mathematics for astronomers", based on manu-
script sources, led me to the discovery of some traces of the "prehistory" of the 
evolution of the Euclidean concept of space in Western mathematics, well before 
the activity of Pacioli began. In this paper, problems concerning the Euclidean 
spatium will be considered as they present themselves some fifty years before 
Pacioli's Summa de aritmetica, algebra, proportioni e proportionalità was com-
posed. In what follows, I will refer to Giovanni Bianchini's treatises Arithmetica 
and Arithmetica algebrae, both written around 1440 in Ferrara, and both incorpo-
rated in Bianchini's astronomical work, the Flores Almagesti. The first of these 
treatises is devoted in part to theoretical arithmetic and in part to applications of 
its theorems to the solution of numerical problems, and the second, Arithmetica 
algebrae, known also as De algebra, explains to astronomers the procedures 
aiming to solve the six famous forms of square equations. The exposition includes 
the rules of operations with negative numbers, and with algebraic fractions. Both 
treatises have already been the subject of preliminary studies4. 

Bianchini's exposition of arithmetic is remarkable for several reasons. First, 
Bianchini extends the concept of number, limited in its classical form to positive 
integers, and he also regards as numbers fractions, surds and negative numbers 
- numerical expressions of negative values - and produces geometrical proofs 
justifying the four mathematical operations with negative numbers. Then, he 
exposes the idea of the "unit segment" used for the geometrical presentation of the 
extraction of square root (anticipating Bombelli's and Descartes' concept of the 
"unit segment" used for analogue purposes) and reflects upon geometrical "justi-
fication" of the existence of powers and roots of degrees higher than the third. 
Finally, Bianchini deals with incommensurables in the context of decimal positio-
nal fractions which he was the first in Europe to use systematically5. 

Bianchini's achievement confinus an opinion held by historians of practical 
arithmetic (the arithmetic of the abacists), that it was within the framework of the 
search for new tools, appropiate for the solution of numerical problems, that the 
concept of number developed in Renaissance and early modern mathematics6. In 
fact, it was arithmetic and algebra, both developed by Bianchini for astronomical 
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purposes, that incited him to face the incosistencies in mathematics as perceived 
through the relationship between arithmetic and geometry. 

In what follows, first I will consider Bianchini's concept of number as well as 
his views on the arithmetic of n a t u r a l n u m b e r s (positive integers) in relation 
to the Euclidean spatium (the case of the square, cubic and "related" roots, as well 
as of the "regular" roots and powers of degree higher than third). Then, I will turn 
to Bianchini's arithmeticofsubstractive and n eg at i ve n u m b e r s . Bianchini's 
explication of how to subtract a greater number from a smaller one, and sub-
sequently his attempt to justify geometrically multiplication of binomials compo-
sed with substractive numbers - which in fact function there as the negative ones 
- is a good illustration of the very special place of Bianchini 's achievement in the 
rise of early modern mathematics. (Let me signal at this point that the same 
geometrical construction as that of Bianchini's, justifying operations with negative 
numbers in accordance with the ' law of signs", was subsequently given by Simon 
Stevin in the Arithmétique (1585)7. 

1. EUCLIDEAN SPATIUM AND BIANCHINI'S CONCEPT OF NUMBER 

As I tried to demonstrate in my former papers, in the Arithmetica, Bianchini 
breaks off with the Euclidean number understood as a result of a cumulation of 
units (Elements VII.2). Consequently, he rejects the concept of unity as being not 
a number in the proper sense of the term but "an origin of numbers"; at variance 
with Bianchini, Georg Peurbach states in the Opus Algorithmi iocundissimum (ca 
1450) as follows: "Unitas autem non est numerus sed principium numeri. Unde 
ipsa habet se in Arithmetica sicut punctum in Geometria ad magnitudinem". In 
Bianchini's Arithmetica a unity is considered as a number among other numbers: 
it is divisible and, of course, it may also serve as a divisor. In fact, Bianchini uses 
the inversion of a number for multiplication, and furthermore he introduces uni-
ty in his concept of proportion. In that way, he can express multiplication through 
a "ratio"8. 

When fractions are divided by integers, they are multiplied by u n i t y 
in proportion to the number of divisor. [...] 

In multiplication, three [elements] are required: the multiplied, then the 
multiplicand, and the product. The proof of this is division, because if the 
product is divided by the multiplied the result will be the multiplicand, and 
on the contrary, if [it is divided] by the multiplicand the result will be the 
multiplied. 

And this holds for the discrete quantity9 . 

Accordingly, for Bianchini, multiplication is no longer a "repeated addition" 
or an "abridgement of addition" (as for Peurbach, he omits the definition of 
multiplication in the chapter of the Opus Algorithmi dedicated to this operation, 
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and passes to the examples). In fact, Bianchini seems to be the first European 
mathematician to state the theorem of division and to use it in the definition of 
multiplication. 

As for Bianchini's concept of negative number (a number representing a ne-
gative value), first it appears in relation with subtraction, when the subtrahend is 
geater than the minuend: 

[...] thus, you have subtact 55 from 50. And since the subtrahend is 
greater than the minuend, do the converse, subtract 50 from 55, [and there] 
remains 510. Thus, in our notation: 

5 0 - 5 5 = 5 0 + (-55) = - 5 

Bianchini uses the term "additio minuenda" (addition that diminishes) for such 
operations. This "diminishing" may go as far as to give as result a number smaller 
than zero. Subsequently, Bianchini will operate with numbers "smaller than 0" just 
as with the positive ones, respecting the rules of signs. 

In the Arithmetica two terms appear in relation to negative numbers: "diminu-
tum" and "minus". 

The following is an example of the use of "diminutum": 

[...] in the subtrahend there is the root o f 2 4 d i m i n i s h e d , which 
you have to add to the root of 611. 

But when Bianchini formulates the "law of signs", he no longer uses the term 
"diminutum" but the term "minus", that means the n e g a t i v e n u m b e r 
(considered as an abstract, existing independently from the physical reality, also 
independently from the physical space, and thus, not meaning, for instance, a "ne-
gative direction"). The idea of negative numbers that clearly results from Bianchi-
ni 's Arithmetica (cf. the example of substraction given above, and then, below, the 
use of the term "minus" in the "law of signs") allows us to suppose that in ope-
rations with polynomials with negative coefficients (subtractive numbers) Bian-
chini was also aware that a subtractive number can function as a negative one, 
expressed as a + (-a) = 0. Furthermore, as it is signalled, Bianchini admits negative 
products, calling them the "products minus". 

2. EUCLIDEAN SPATIUM, 
BIANCHINI'S CONCEPT OF "NEGATIVE PRODUCT", 

AND THE GEOMETRICAL "PROOF" 
OF MULTIPLICATION "PLUS TIMES MINUS" 

It is interesing to note that the law of signs appears in the context of multipli-
cation of roots, the multiplication of surds included. Chapter 13 of the Arithmetica, 
De practica radicum adinvicem, in which the law of signs is presented, begins with 
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the definition of multiplication of discrete numbers, then a [geometrical] defini-
stion of multiplication of continuous quantities is given, followed by the "laws of 
signs"12. 

Bianchini's laws of signs are formulated in the way we use to find in modem 
text-books of arithmetic. Here, I will quote the second of Bianchini 's laws, the first 
being trivial (multiplication plus times plus), and the third (multiplication minus 
times minus) being already discussed elswhere, and I will try to present the way 
Bianchini uses the Elements for the sake of constructing his "geometrical proof' , 
justyfying the multiplication "plus times minus"13. 

[2] When plus is multiplied times minus or minus times plus, the product 
will be minus. And this results [from the fact] that the more minus increases 
or plus decreases, the more t h e p r o d u c t m i n u s [me negative product] 
increases. 

The statement [2]: "the more minus increases or plus decreases, the more 'the 
product minus' [the negative product] increases", strange as it might seem, points 
the character of Bianchini's concept of number. In fact, Bianchini' statement that 
"the m o r e the minus (negative number) diminishes the m о r e the plus (positive 
result) increases", and thus, eventually, in [3] the statement "when minus is multiplied 
times minus the result is plus", concerns operations with numbers considered as 
abstracts, and not as expressions of physical reality any more. For this reason 
Bianchini's "numbers" function here i n d e p e n d e n t l y of the Euclidean 
concepts of number and of space. Nevertheless, Bianchini refers to the Elements 
in his construction of the "proof ' of the [2]. This "proof ' is given in chapter 17 of 
the Arithmetica, entitled De multiplicatione plus per minus, where Bianchini 
considers the following example (4 + лГ?)(8 - 16). A remark has to be made to 
this proposal: in the numerical example obviously 16 functions as a negative 
coefficient (and not a negative number): 

В 

с 

N Q 

M 

О 
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A B = Q M = 4 

A Q = B M = 8 

В С = M T = л /9 

Q N = ( л Я б ) [!] 

A C = ( 4 + Л / 9 ) 

A Q = 8 

A N = ( 8 - л Я б ) 

A C • A N = • A N C O = ? 

• A Q C T = • A Q B M + • B M C T - 56 

A B • A Q = • A Q B M = 32 

B M • В С = • B M C T = 24 

N Q [quae est Rx de 16!] • 4 = л / 2 5 6 = 16 

О Т [quae est Rx de 16!] • T M [Rx de 9] = л / Й 4 = 12 

• A N C O = • A Q C T - • N Q O T = 28 

I will multiply 4 plus the root of 9 times 8 minus the root of 16.1 draw 
lines of multiplication at right angle in the point A: AB that is 4 and ВС that 
is the root of 9. Also AQ is 8 and QN is the root of 16. 

It is obvious, from that was declared above, that the product AC times 
AN is an area of a quadrangle ANCO. And first I will look for its quantity. 
I multiply line AB times AQ and I receive a quadrangle AQBM [...] the area 
of which is 32.1 mul- tiply BM, equal AQ, times ВС, which is the root of 9, 
and this will give the area of the quadrangle. BMCE, equal to the root of 
576, i.e. 24; thus, it is obvious that the whole area AQCT is 56, from which 
the area NQOT has to be subtracted. 

So multiply NQ, the root of 16, times QM that is 4 and the product will 
be root of 256. 

Equally, I will multiply ОТ, the root of 16, times TM the root of 9, and 
the product will be the root of 144. These two areas taken together are [equal] 
to the root of 784, i.e. 28, that subtracted from the whole area AQCT, which 
is equal to 56, the rest is the area ANCO 281 4 . 

3. E U C L I D E A N SPATIUM A N D T H E P O W E R S A N D R O O T S 

Prob lems with the Euc l idean spatium man i fes t themselves at the beg inn ing of 
chapter 8 of the Arithmetica, entitled De practica in radicibus universalibus 
operanda, where an explicat ion of t enns is given. B ianch in i ' s d iscuss ion of p o w e r s 
and roots, the surd roots included, is conducted on two levels, ar i thmet ical and 
geometr ica l . Bianchini uses the te rms " f in i s " and " p r o n o m e n " fo r " p o w e r " and the 
term " rad ix" for "root" . Somet imes however , " rad ix" means both " roo t " as wel l 
as, wha t w e call a " n u m b e r as considered in its f i rs t power" : 

Root means the same as the priciple or origin or foundation, and obtains 
its name from its determined end. Sometimes this determined end [number] 
is looked for by means of the root that is given, and sometimes on the 
contrary, the root is looked for by means of the given number. [...] 
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A surd root is found by means of l i n e s o r p l a n e s o r s o l i d s , 
with geometrical demonstrations15. 

In chapter 9 of the Arithmetica, De tribus generibus radicum [...], Bianchini 
considers square roots, cube roots and the "related roots" - "radices relatae", and 
in this fragment he seems to assert that only these three kinds of roots exist: 

On the square root in numbers or in a r i t h m e t i с . All [each] number 
multiplied by itself is the root of this product. 

In g e o m e t r y each line multiplied by itself constitutes a square that 
is circumscribed by four equal lines and [has] four right angles. The line 
e x p r e s s i n g the q u a n t i t у of the s u r f а с e is its root or its square 
root. 

Secondly on the cube root. I state that a r i t h m e t i c the cube root 
means a number that is multiplied by itself and they multiplied by this 
product, and thus the cube root of the [ultimate] product is this [first] number. 

In g e o m e t r y a line multiplied by itself produces a square surface 
that multiplied by a s q u a r e surface [!] produces a cube [!]. 

Thirdly on the related root. I state that a root related absolutely means 
a root related to its own root. In a r i t h m e t i с it is understood as a number 
multiplied by itself and the product multiplied by the root of the [first] 
number [a a- VÏ7]. This number is called the related root of the last product. 
For instance 4 multiplied by itself gives 16, which multiplied times root of 
4 gives the product of 32, of which the related root is 4, and the root of 4, 
which is 2,1 will call the minimum root. 

In g e o m e t r y this is understood [as follows]: All square surface 
times itself constitutes a solid of the four square, equal surfaces. [This solid] 
multiplied by the r o o t of the first surface forms the u 11 i m a t e s o l i d 
[!], of which the related root is equal to the surface of the first square. 

And these solids c a n n o t be well d e m o n s t r a t e d on surfaces 
(planes), but the examples given in numbers are clear16. 

As it follows from the definitions given above, Bianchini was not always aware 
that o n l y the square roots and the second powers of numbers do not present 
difficulties when considered from the point of view of their s p a t i a l character. 
In the case of a number raised to the third power, the inconsistency between 
arithmetical expression of the power and a spatial (geometrical) one is to be noted 
(this inconsistency, however, was noted by Bianchini). Actually, though Bianchi-
ni 's a3 expressed arithmetically means 

a • a • a = a3, 

the same a3 expressed geometrically, as "a line times a line, and times a p i a n e", 
means 

2 2 2 4 a • a • a = a • a = a . 
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In fact, Bianchini found himself, while offering a geometrical interpretation of 
the third power, between the Scylla of the principle of homogeneity (homogenea 
homogeneis comparait..), and the Charybdis of the lack of a proper g e o m e t r i c a l 
t o o l to raise a number (expressed as a line segment) to the third power in the 
framework of the Euclidean geometry. 

As for the third sort of roots (and powers), the "related roots", Bianchini admits 
that in this case the incompatibility of arithmetic with geometry manifests itself 
plainly. And, after giving this statement, he seems to circumvent this "incompati-
bility" rather than to face it. According to him, the situation is simply due to the 
fact that "the demonstration concerning solids cannot be performed on sufaces 
(planes), but the examples given in numbers are c lear" 1 7 . This statement, closing 
the discussion, may be interpreted as follows: what matters eventually in arithmetic 
is the correct solution of an arithmetical problem, given in n u m b e r s . In that 
way, in the presentation of the radices relatae, the question of the compatibility of 
the arithmetical expressions with Euclidean spatium is simply ignored. Thus, 
Bianchini discredits here geometry as a discipline "furnishing proofs". 

The same tendency to liberate arithmetic from geometry dominates the Arith-
metica algebrae, the second of Bianchini's mathematical treatises included in the 
Flores Almagest, in which Bianchini considers i.a. operations that lead to the 
"square of square". When introducing the basic notions of algebra, Bianchini gives 
the geometrical models that correspond to the first, second and third power. As for 
the "square of a square", the case is not discussed: 

In the whole practice of the rules of algebra four denominations or four 
names are commonly used, namely res, census, cubus and census de censu. 
Res means root, census means a square or a square plane (surface), cubus 
means a solid. Census de censu is a square of a square. All these originate 
from a root or from res 1 8 . 

Generally, Bianchini, when operating with algebraic expressions, algebraic 
fractions included, is not disturbed by the lack of geometrical entities that would 
correspond to them. In there circumstances, he sometimes simply signals the 
insufficiency of Euclidean spatium, when the arithmetical operations lead to the 
results "overpassing" the dimensions of physical reality - and sometimes he 
remains in doubt as to the admissibility of such operations rather than as to validity 
of Euclidean concept of spatium. The latter reaction seems to indicate that Bian-
chini was aware of the serious philosophical consequeces of the apparently trivial 
arithmetical problems: the admission of powers and roots of a degree higher than 
the third would require the admission, in the framework of Euclidean concepts of 
number and of space, of entities corresponding to such mathematical objects. This 
admission, at its turn, would equally contradict the sensual evidence, and the 
Euclidean concept of spatium that resulted from it. Thus, all declaration in favor 
of mathematical objects such as a 4 or S/îT would question the status of Euclidean 
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geometry considered not only as a model of scientific thinking, but also as the 
model of physical reality. One can easily imagine that Bianchini, being not only 
a mathematician but also an astronomer, was by no means interested in a similar 
resolution, since it would also question the validity of his own geometric (kinema-
tic) models explaining the univers19. 

CONCLUSION 

As it results from the Arithmetica and Arithmetica algebrae, Bianchini was 
aware of the formal insufficiency of Euclidean geometry as related to arithmetic 
and algebra, both considerably developed by himself. Bianchni's concept of 
number, extended to negative numbers, and his free use of the powers and roots, 
surpassed the possibilités of geometrical representations offered by Euclid. In spite 
of this insufficiency of the Elements Bianchini had to accept the concept of spatium 
inherent to the Euclidean geometry. He just limited himself to ignoring the 
Euclidean spatium w h e n it presented a hindrance in justifying the arithmetical 
operations with "non-Euclidean" numbers. Otherwise, Bianchini remains with 
Euclid, aware (as it seems) of the fact that the complete liberation of mathematics 
from the Euclidean spatium would signify the liberation of mathematics from 
reliance on sensual experience: a situation hardly acceptable for a 15th century 
astronomer working with geometrical models of the univers. 

Since 15th century geometry obviously lacked tools to express the concept of 
number as it is present in both, Arithmetica and Arithmetica algebrae Bianchini's 
arithmetic and arithmetized algebra found themselves in a sort of vacuum with 
regard to geometry (except for the idea of the unit segment that appears in the 
Arithmetica). 

Two centuries later, new ways to present relations between number and 
magnitude, thus the relations between number and space, and consequently be-
tween mathematics and physics, are presented in Descartes' Geometry (1637). 
Newton's concepts of space will be created in the framework of these new relations. 
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the text differs sightly from the one intended for the Miscellanea). I apologize to the 
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Organizers of the 30 Kölner Mediaevistentagung, and I thank the Editorial Board of the 
"Kwartalnik HNiT" for accepting my paper for publication. 

3 J . D i e u d o n n é : op.cit. p. 4. B.A. R o s e n f e l d : op.cit. pp. 156-161. Simon 
S t e V i n : Arithmétique. Leiden 1585 p. 167. On the extension of the number concept in 
the 15th century mathematics see G. R o s i ń s к а : Л Chapter in the History of the 
Renaissance Mathematics: Negative Numbers and the Formulation of the Law of Signs 
(Ferrara, Italy ca. 1450). "Kwartalnik Historii Nauki i Techniki" Vol. 40:1995 nr 1 pp. 
7 -8 , where Bianchini's geometrical "proof ' of multiplication minus by minus is conside-
red. E a d e m : The "fifteenth-century roots" of modern mathematics. The unit segment. 
Its function in Bianchini's De Arithmetica, Bombelli's Algebra... and Descartes' La 
Geométrie. "Kwartalnik Historii Nauki i Techniki" Vol. 41:1996 nr 3 -4 p. 64. A study of 
the development of the concept of negative numbers is given by H. G e r i с к e : Zur 
Geschichte der negativen Zahlen. In: History of Mathematics, States of the Art. Flores 
quadrivii - Studies in Honor of Christoph J. Scriba. Academic Press, San Diego 1996 pp. 
279-306. 

4 G. R o s i ń s k a : Algebra w środowisku astronomów krakowskich w XV wieku. 
Traktat z Flores Almagesti Jana Bianchiniego. "Kwartalnik Historii Nauki i Techniki" 
Vol. 39:1994 pp. 3 -19 (and the English version forthcoming in the "Organon"), as well as 
my papers on Giovanni Bianchini refered to in the note 3. 

5 G . R o s i ń s k a : Decimal Positional Fractions. Their use for the Surveying Purposes 
(Ferrara 1442). "Kwartalnik Historii Nauki i Techniki" Vol. 40:1995 pp. 17-32. 

6 See for instance S.A. J a y w a r d e n e : The Influence of Practical Arithmetic on 
the Algebra of Rafael Bombelli. "Isis" Vol. 64:1973 pp. 510-523. 

7 See H. G e r i с к e , op.cit. pp. 280-281. 
8 Bianchini's concept of number, expressed through a p r o p o r t i o n 1 : = b : ab, 

together with its application to the multiplication of fractions, as well as its place in the 
evolution of the number concept during a period from 16th to 18th century: Bombelli 
- Descartes - Newton, is discussed in G . R o s i ń s k a : The "Fifteenth-Century Roots" 
of Modern Mathematics, op.cit. pp. 58-60. 

9 В i a n с h i n i : Arithmetica. Quando fractiones dividuntur per intégra, multiplicentur 
fractiones secundum proportionem unitatis ad numerum divisorem. [...] In omni multipli-
catione tria requiruntur: numerus multiplicans, secundo multiplicandus et productum. 
Cuius probatio est divisio, quia si productum dividatur per multiplicantem exibit multipli-
candus et econverso, si per multiplicandum exibit multiplicans. Et hoc in quantitate 
discreta. 
See also above, note 8. All Bianchini's texts are quoted following (he critical edition of the 
Arithmetica, based on the manuscripts preserved in Italy: Bibliotheca Apostolica Vaticana, 
Vat. Lat. 2288, ff. 16-25v and Vat. Reg. Lat. 1115, ff. 38r-52r; Perugia, Biblioteca 
Comunale Augusta, 1004, ff. l r -8r . In Poland: Cracow, Biblioteka Jagiellońska, BJ 558, 
ff. l r -12r , and in France: Paris, Bibliotheque Nationale, BN. Lat. 1025, ff. 6r-23r. See also 
G. R o s i ń s k a , A Chapter, pp. 5 - 6 and 14 notes 8-10. The s p a t i a in Bianchini's 
texts are mine. 
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1 0 В i a n с h i n i : Arithmetica. [...] Debes ergo de 50 plus subtrahere 55. Et quia 
numerus subtrahendus excedit numerum a quo debet subtrahi, fac econverso, subtrahe 50 
de 55, restant 5. See G. R o s i ń s k a , A Chapter, pp. 12 and 18 n. 29. 

u B i a n c h i n i : Arithmetica. Prout in proposito: in parte subtrahenda est radix de 
24 d i m i n u t i , quam debes applicare radici de 6. (-V24~ + V6). 

12 The rules of computation with t h e s u b t r a c t i v e numbers (negative coefficients 
appearing in binominals) go back to Diophantos, 3rd century AD. The first formulation of 
the rules of computation with n e g a t i v e numbers appears in Europe centuries later, in 
a 10th century treatise. This treatise, however, according to historians did not exert 
influence on next generations of mathematicians. M. F о 1 к e r t s : Pseudo-Beda: De 
arithmeticispropositionibus. Eine matematische Schrift aus der Karolingerzeit. In: "Sud-
hoffs Archiv" 26 1972 pp. 22-43. H. G e r i с к e , op.cit. pp. 288-290. J. S e s i a n о : 
The Appearance of Negative Solutions in Mediaeval Mathematics. In: "Archive for History 
of Exact Sciences" Vol. 32 1985 p. 106. 

13 В i a n с h i n i : Arithmetica. Cap. 13: Quando plus multiplicatur per minus aut 
minus per plus productum erit minus et hoc patet quia quanto minus augetur aut plus 
minuetur tanto productum fiet minus. Multiplication "minus times minus" was discussed 
in my: A Chapter, op.cit. pp. 7 -8 . 

1 4 В i a n с h i n i : Arithmetica. Cap. 17: Rursus volo multiplicare 4 plus radix de 9 per 
8 minus radix de 16. Firmabo lineas multiplicationis supra punctum A ad angulum rectum 
AB, scilicet, quae sit 4 et ВС radix de 9. Item AQ sit 8 et QN fuit radix de 16. 
Manifestum est per id quod supra declaratum est quod productum AC per AN est 
superficies quadranguli ANCO, cuius primo quaero quantitatem. Produco enim lineam AB 
per AQ et fiet quadrangulum AQBM lateribus aequedistantibus et contra se positis 
aequalibus, cuius superficies est 32. 
Item producam BM quae aequatur AQ per ВС, quae est radix de 9, et producitur superficies 
quadranguli BMCE quae est radix de 576, id est 24, quare manifestum est quod tota 
superficies AQCT est 56, a quibus minuenda est superficies NQOT. 
Multiplica ergo NQ, quae est radix de 16, per QM quae est 4, et fiet productum radices de 
144. Quae duae superficies simul iunctae sunt radices de 784, id est 28, quare tota 
superficies NQOT est 28, qui subtracti a tota superficie AQCT quae est, ut supra 56, restât 
superficies ANCO 28, quod est propositum. 
В i a n с h i n i : Arithmetica. Cap. 17: Cuius r e g u 1 a m accipe per modum supra dictum, 
videlicet multiplica 4 per 8 erit productum 32. Item 8 per radicem de 9 plus producitur 
radix de 576 plus. Item 4 per radicem de 16 minus producitur radix de 256 minus. Item 
plus radix de 9 per minus radix de 16 producitur radix <de> 144 minus. Adde ergo 32 cum 
radice de 576 quae est 24 erit eorum summa 56, a quibus subtrahe radices de 256 et de 144, 
quae sunt 28, restant etiam 28, quod est idem propositum. 

15 В i a n с h i n i : Arithmetica. Radix idem sonat sicut principium vel ortus aut 
fundamentum et secundum eius determinatam finem acquirit pronomen. Et aliquando per 
notam radicem datam quaeritur eius determinatus finis et aliquando econverso, per datum 
pronomen quaeritur radix ex qua oritur. [...] Surda radix [...] invenitur per l i n e a s aut 
s u p e r f i c i e s aut c o r p o r a cum geometricisdemonstrationibus. 
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16 В i a n с h i n i : Arithmetica. Radix quadrata in numeris seu in arithmetica. Omnis 
numerus in se ductus vocatur radix producti. [...] In g e o m e t r i a autem omnis linea in 
se ducta constituit quadratum circumscriptum a quatuor aequis lineis et quatuor rectis 
angulis, cuius superficiei quantitatis linea, ipsa est radix seu radix quadrata. 
Secundo de radice cubica. Dico quod radix cubica in arithmetica dicitur numerus qui in se 
ductus et iterum in productum, ille numerus dicitur radix cubica istius ultimi producti. [...] 
In g e o m e t r i a autem linea in se ducta producit superficiem quadratam et etiam 
multiplicata per s u p e r f i c i e m quadratam producit corpus cubicum. 
Tertio de radice relata. Dico quod radix relata absolute intelligitur relata a sua radice, quae 
in arithmetica intelligitur omnis numerus in se ductus et productus in radice ipsius numeri. 
Ille numerus vocatur radix relata istius ultimi producti, ut 4 in se ductus producit 16, qui 
ductus in radicem de 4 producit 32, cuius radix relata est 4, cuius etiam radix quae est 
2 nominabo radicem minimam. 
In g e o m e t r i a autem intelligitur: Omnis superficies quadrata in se ducta constituit 
corpus quadratum aequalium superficierum, quod etiam ductum in radice superficiei primi 
quadrati formatur u l t i m u m c o r p u s , cuius radix relata vocatur superficies primi 
quadrati. 

17 В i a n с h i n i : Arithmetica. Et ista c o r p o r a male in superficie p l a n a possunt 
demonstrari, sed in n u m e r i s patet exemplum. 

18 В i a n с h i n i : Algebra. In tota practica regularum algebrae quatuor denominationes 
seu quatuor vocabula cummuniter utuntur scilicet res, census, cubus et census de censu. 
Res enim idem sonat quantum radix. Census autem quadratum sonat seu superficiem 
quadratam. Cubus vero corpus solidum. Que omnia a radice seu a re oriuntur. 

19 Bianchni's planetary models are essentially Ptolemean, with the exception of the 
improvement introduced by Bianchini to the Ptolemean model of the Moon. 

Grażyna Rosińska 

SP ATI UM WEDLUG EUKLIDESA 
JAKO PROBLEM W MATEMATYCE XV WIEKU 

Koncepcja trójwymiarowej, metrycznej „przestrzeni" w Elementach Euklidesa była 
wynikiem zarówno pitagorejskiej koncepcji liczby, jak i odpowiedzi dawanych na trudno-
ści, jakie wynikały dla matematyki z takiej właśnie koncepcji. Zatem, Euklidejska prze-
strzeń (termin „przestrzeń" nie zaistniał jednak w myśli starożytnej, dlatego, respektując 
szczególność Euklidejskiej „przestrzeni" i w celu uniknięcia wieloznaczności wprowadzo-
no tutaj na jej określenie termin spatium), była ograniczona do „przestrzennych relacji" 
między określonymi p r z e d m i o t a m i . Relacje te były wyrażane poprzez relacje 
między odcinkami. Innymi słowy, pojęcie „przestrzeni" u Euklidesa było, w pewnym 
znaczeniu, formalnym wyrazem realnej, trójwymiarowej, zamkniętej przestrzeni, odbie-
ranej w poznaniu zmysłowym [przypisy 1,2]. 
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Problemy ze spatium zaczęły się jeszcze w starożytności i miały swe źródło z jednej 
strony w formalnych niedoskonałościach Euklidejskiego systemu geometrii (kwestia 
postulatu „O równoległych") z drugiej zaś strony wynikały z rozwoju arytmetyki i algebry, 
wcielonych do geometrii (geometria bowiem uzasadniała ich twierdzenia), natomiast 
w rzeczywistości „nie mieszczących się" w koncepcji geometrii odcinków wyrażających 
rzeczywistość (w tym przestrzeń) fizyczną, o czym wyżej. Przede wszystkim ta druga 
sprawa, a także kwestia geometrycznej prezentacji liczb ujemnych, są przedmiotem 
rozważań w obecnym studium. Jak wiadomo problemy te zostały rozwiązane w XVII 
wieku w Geometrii Descartesa i w dziełach Fermata, dzięki ujęciu relacji „przestrzennych" 
w sytemie współrzędnych i wyrażeniu przestrzeni „jako całości" (o czym mówi Einstein 
w zacytowanym fragmencie). 

Zanim jednak przyszły te nowożytne rozwiązania, problem stwarzany przez Euklidej-
skie spatium był realną trudnością dla arytmetyki i algebry, operujących już innym 
pojęciem liczby niż to, któremu odpowiadały Elementy. Fakt, że nie było modelu geome-
trycznego dla potęg i pierwistków wyższych niż trzeci oraz brak koncepcji „odcinka 
ujemnego", który wyrażałby liczby ujemne (wprowadzone przez Giovanniego Bianchi-
niego do matematyki już w połowie XV wieku), kwestionował status arytmetyki i algebry 
jako nauki, bowiem to czego nie można było udowodnić geometrycznie „nie było nauko-
we". (Tu prawdopodobnie tkwią powody zahamowania matematyki „uniwersyteckiej" 
w XV i XVI wieku oraz jej rozwój w środowiskach handlowców «scuole d'abbaco», 
inżynierów i architektów) [przypisy 6,7, 12]. 

Sytuacja matematyki w XV wieku w aspekcie jej odniesień do Euklidejskiego spatium 
ukazana jest na przykładzie dwóch traktatów Bianchiniego, poświęconych wykładowi 
arytmetyki oraz wykładowi algebry. Oba traktaty były już przedmiotem wcześniejszych 
studiów, mających na celu ukazanie XV-wiecznych źródeł matematyki nowożytnej (wpro-
wadzenie przez Bianchiniego ułamków dziesiętnych oraz liczb ujemnych, traktowanie 
niewymierności jako liczby, koncepcja „odcinka jednostkowego" i jego funkcjonowa-
nie w wyrażaniu niewymierności) [przypisy 3, 5, 8,9]. Gdy chodzi o stosunek Bianchi-
niego do Euklidejskiego spatium, to w niektórych przypadkach (jak mnożenie liczb o 
„różnych znakach" - wg obecnej terminologii), Bianchini wydaje się nieświadomy trud-
ności związanych z istnieniem "ujemnego odcinka", podobnie zresztą, jak przeszło sto lat 
po Bianchinim, nie był tych trudności świadomy Simon Stevin (w rzeczywistości odcinek 
w ich dowodach na mnożenie liczb ujemnych jest zawsze odcinkiem dodatnim, konse-
kwentnie nie ma też mowy o "ujemnej płaszczyźnie"). W innych przypadkach, Bianchini 
ukazuje nieprawidłowości wynikające z interpretowania geometrycznie wyrażeń arytme-
tycznych czy algebraicznych i w związku z tym niewystarczalność Euklidejskiej koncepcji 
spatium. Na przykład, gdy mówi otwarcie o niemożliwości przedstawienia geometrycznie 
działań z potęgami i pierwiastakmi powyżej trzeciego stopnia. Wówczas rolę dowodu 
spełnia poprawność rozwiązania przedstawionego „w liczbach" [przypisy 10,11,13-18]. 

Wreszcie Bianchini wprowadził szczególną konstrukcję geometryczną z udziałem 
„odcinka jednostkowego" (ale jej w pełni nie wykorzystał). Konstrukcja ta pojawi się 
następnie u Bombellego, a u Descartesa stanie się podstawą do zdefiniowania geometry-
cznie działań arytmetycznych, z uniknięciem trudności „przestrzennych". Będzie to doko-
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папе w ramach geometrii Euklidesa, ale w nowy sposób. Dzięki temu właśnie Descartes 
stanie się autorem nowego, „całościowego" ujęcia przestrzeni, „niezbędnego dla fizyki 
Newtona". 


