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Almost all social science data are analysed with variants of the General Linear Model (GLM): regression 
analyses, analyses of variance, factor analyses, path analyses and the like. However, many interesting 
and important social phenomena cannot be addressed with the GLM. Ordinal Pattern Analysis (OPA) 
was developed to examine such excluded phenomena. OPA is a goodness-of-fit procedure for calculating 
indices of how well a researcher's ordinal predictions match the ordinal properties of data at hand. While 
the GLM requires raw data to be aggregated across individuals or groups first before being analysed, 
OPA permits the reverse: Raw data from each individual or group can first be analysed, then aggregated. 
The reversal reveals what occurs "in general" rather than "on average" – two revelations that often 
diverge. We illustrate some uses of OPA with simple examples, and provide a computer programme for 
expediting OPA calculations.
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Analiza Struktur Porządkowych
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Prawie wszystkie dane w naukach społecznych są analizowane przy użyciu wariantów ogólnego modelu 
liniowego (GLM): analizy regresji, analizy wariancji, analizy czynnikowej, analizy ścieżek i tym podob-
nych. Jednak wiele ciekawych i ważnych zjawisk społecznych nie daje się przeanalizować przy użyciu 
GLM. Analiza Struktur Porządkowych (OPA) została opracowana w celu zbadania tych wykluczonych 
zjawisk. OPA, oparta na kryterium dobroci dopasowania, służy do obliczania wskaźników dopasowania 
przewidywań badacza do rzeczywistych danych mierzonych na skali porządkowej. Podczas gdy GLM 
wymaga agregowania surowych danych po obserwacjach lub grupach przed przystąpieniem do analiz, 
OPA pozwala na działanie odwrotne: surowe dane od każdej osoby lub grupy można najpierw analizować, 
a następnie agregować. Ten mechanizm odwrócenia ujawnia zjawiska, które występują „zazwyczaj”, raczej 
niż „średnio” – dwa wyniki, które często się różnią. Ilustrujemy niektóre zastosowań OPA na prostych 
przykładach i udostępniamy program komputerowy do obliczeń OPA.

Słowa kluczowe: statystyka, wnioskowanie, dobroć dopasowania, struktury porządkowe.

JEL: C14, C18
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Beginning in the 1950s, people who analysed social science data diverged 
into two camps: Goodness-of-Fitters (Fitters), and Variance-Splitters (Split-
ters). Fitters wanted to assess how close the predictions of their disciplinary 
theories or models mimicked the data they collected – how close was their 
theory-data fit. Most of their models were mathematical, and most of their 
observations had the useful properties of ratio measurement. Prototypi-
cal were mathematical models of perception and learning that generated 
beautiful predictions of regular wiggles and smooth curves.

Many Fitters tested their predictions with data gathered from labora-
tory experiments. They plotted the results on the same graph as the pre-
dictions, then assessed how closely the results fit the predictions. Some 
Fitters adapted least-square indicators similar to those employed by Split-
ters. Rather than praying for statistically significant differences, however, 
the Fitters prayed for insignificant ones, hoping to conclude that their 
predictions and observations were insignificantly different, if not quite the 
same. Other Fitters relied on a more venerable tradition from the physical 
sciences, ignoring statistical inference tests for what became known as the 
“eyeball technique” or “inter-ocular-trauma test”: assessing fit by whether 
or not plots of predictions and observations were close enough to hit them 
between the eyes.

In contrast to Fitters, Splitters spent little time inventing or refining 
theories and models using concepts from their own disciplines. Instead, they 
chose to embrace a statistical model and theory of inference that promised 
to reveal patterns in data, even patterns smothered in sampling and measure-
ment error, without the need of disciplinary concepts. Their choice? The 
General Linear Model (GLM) grafted onto traditional, Neyman-Pearson 
(NP) tests of a misleading euphemism: statistical significance.

During the past half-dozen decades, the population of Splitters in social 
science has grown exponentially, while the population of Fitters has sput-
tered. The reasons have nothing to do with the relative validity of each 
approach. Indeed, as the literature exposing the numerous limitations of the 
GLM + traditional inference has expanded, goodness-of-fit appears increas-
ingly as a  sensible alternative. But, much like the silly norms of English 
spelling, the popularity of the GLM+NP style of data analysis has been 
much influenced by psychological, social and historical factors. Included 
in are aversions to mathematics and critiques of statistical induction, the 
misperceived sophistication of omni-variate GLM derivations, norms of 
publication, generational lags in the teaching of statistics, and the seduction 
of menu items in commercial statistical software.

Yet, despite its continuing popularity, the limitations of variance-splitting 
remain. They begin with its fundamental assumption: It is scientifically 
meaningful to decompose or partition variations in one set of measure-
ments (independent or predictor variables) into those related to variations 
in other sets of measurements and those related to “error.” The assumption 
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is eerily similar to that early astronomers who accepted Ptolemy’s assertion 
that the earth was the centre of the universe, and that heavenly bodies 
(planets and stars) revolved around the earth in perfect circles or cycles. 
When observations of these bodies did not match their predicted locations, 
astronomers invented the concept of an epicycle, a smaller revolution coiling 
around the perfect circle, then an even smaller second revolution coiling 
around the coil around the perfect circle... 

Thanks to Copernicus, Kepler and others, Ptolemy’s assertion eventu-
ally sank into the pit of bad ideas, only to be revised by the GLM and its 
partitioning of variance into the equivalent of cycles and epicycles. Think 
of the grand mean of a data set as its earth. Main effects (cycles) revolve 
around the grand mean. First-order interactions (epicycles) revolve around 
the main effects. Higher-order interactions revolved around the next-lowest 
ones. And whatever is left is assumed to be random sampling or measure-
ment error. These assumptions make the GLM mathematically beautiful 
and relatively easy to extend (as some used to do in stats courses before 
the invention of statistical software). But its beauty seems unmatched by its 
realism; there is scant evidence beyond astrology to believe people behave 
according to epicyclic laws.

Other limitations of the GLM have less to do with its assumptions or 
derivations than with how it is employed. Consider, for example, the ten-
dency among social scientists to believe that whatever they are studying 
will be revealed as differences in averages or means. One consequence is 
that differences in the variability or in the shape of sample distributions 
are either overlooked or treated with contempt. Many social scientists are 
taught to conduct preliminary tests of variance differences, such as Levene’s 
test or the F-Max test, praying that the tests will not be significant. If they 
are significant, cursing is permitted, as are transformations to reduce the 
variance differences and culls of offensive outliers. Could such variance 
differences be associated with something important, replicable and real? 
Perhaps. But the answer lies outside the tradition of the GLM usage.

Another limitation comes from social scientists believing that the mean 
is, well, meaningful or conceptually proper. The statistic called the mean 
has some admirable mathematical properties when data are normally dis-
tributed. Otherwise, the scientific usefulness of the mean rapidly declines. 
Consider, for example, an experiment in which 1,000 research participants 
are asked to rate how much they like or dislike Marmite (a brewing yeast 
extract) before and after tasting it for the first time. Before tasting all 
1,000 participants rate Marmite as a  0 on a  scale ranging from –3 (hate 
it) to +3 (love it). After tasting the goop, 500 rate it as +3 and 500 rate 
it as –3.

Did the tasting make a  difference in participants’ liking of Marmite? 
On average, no; the average rating of Marmite after tasting was 0, exactly 
the same as before tasting it. But in general, yes; 100% of participants 
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changed their rating. Which answer is correct? Both. Which answer gives 
us more insight about people’s reaction to Marmite? We vote for what 
people did in general. What people do in general is frequently different and 
more meaningful than what they do on average. Most decision researchers 
learn this after they naively average across the choices of people who use 
different decision processes, thinking that an “average decision process” 
will be revealed. It won’t, because an average decision process is about as 
meaningful as an average dinner recipe or computer algorithm.

One more limitation is worth mentioning here. Despite repeated warn-
ings and calls to cease, most social scientists still use significance testing 
as a filter, a means of deciding which results they will attend to and which 
they will ignore. The significant ones show up in graphs and discussion sec-
tions; researchers pay attention to them as indicants of the success of their 
research endeavor. Insignificant differences are given short shrift, a dismis-
sive sentence or two at best. Yet significance testing remains subject to the 
Law of Large Numbers: The bigger the sample is, the more likely a signifi-
cant difference will be found. It is the paradox of the concept of statistical 
power. We want the power to detect some significant differences, but we 
don’t want so much power that all differences are statistically significant. 

How do we increase statistical power? Either we buy power with assump-
tions (Coombs, 1968) or we buy it with large samples. Assumptive power is 
illustrated when we assume normal distributions and independent observa-
tions in order to apply parametric tests. Sample-size power is illustrated 
in the frustrations WSAD Summer School students had interpreting their 
printouts when analysing sample sizes of 10,000 or more survey respondents. 
Everything was statistically significant: Every main effect, every interaction, 
every correlation, and every test for anything else. Leaving many students 
baffled by what to do next.

What to do? The traditional notion of statistical significance addresses 
the relationship between samples and their populations. In particular, it 
gives us indicants of the risks – the alpha errors and beta errors – we face 
in generalizing from samples to populations. This is often important when 
the goal of research is to estimate, say, the outcome of an election based 
on small samples of voters or the chances of a contracting a disease based 
on small samples of those exposed to it.

But this is only one of two definitions of generalization. The other one, 
we submit, is far more suited to the kind of social science research most 
social scientists do – the kind that looks for reasons why some patterns of 
results occur and others don’t. And it brings us back to overlooked statisti-
cal practices of Fitters.
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Evidential statistics

Most people taking their first statistics course are required to believe 
two false assertions. The first is that some statistics are better than others; 
many people believe that means, for example, are better than medians or 
modes, and that parametric tests are better than their poor, nonparametric 
cousins. This might be true if “better” refers to mathematical elegance, but 
it is absurdly false if better refers to what is useful for examining the data 
at hand (see, for example, Bradley, 1968).

The second false assertion is that statistics come in only two flavours: 
descriptive and inferential. Statistics come in at least three flavours, each 
serving an important purpose. Descriptive statistics summarize properties of 
samples. Inferential statistics indicate how well our samples can generalize 
to populations. Evidential statistics indicate how well our predictions can 
generalize to our samples.

We believe that social sciences would be well-served by making more use 
of evidential statistics, assessing how well the patterns of their predictions 
match the patterns of data in their samples of observations. How can this 
happen? Most Fitters live in a world of mathematical models and precise, 
laboratory measurements that generate ratio-scale data to test numerical 
predictions. The rest of us don’t. In our world, theories and models are 
verbal. We make greater-than, less-than, rather than numerical, predictions. 
And most of the data we collect, such as rating-scale data, rarely have more 
than ordinal properties.

Are there goodness-of-fit tests adapted to these verbal and ordinal reali-
ties? In particular, are there statistical procedures for generating indices 
of how well the ordinal properties of our data fit our ordinal predictions? 
And can these indices be used to assess the fit of the raw data produced by 
individuals as well as aggregated data summarized by descriptive statistics?

In a word, yes.
Inspired by Denys Parsons’ (1975) ingenious method of encoding musi-

cal tunes by the ordinal properties of their adjacent notes (higher, lower, 
repeat), the first author has for about 40 years indulged in the nerdish 
hobby of creating ordinal, goodness-of-fit tests. The result: Ordinal Pat-
tern Analysis (OPA), a  collection of evidential statistical procedures for 
quantifying the fit between ordinal predictions and the ordinal properties 
of observations. OPA generates what we believe are meaningful and useful 
quantitative indices of these prediction-observation fits. Its procedures can 
be easily employed to examine data from single individuals as well as from 
their aggregates. Several examples of the uses of OPA have been published 
(for example, Thorngate, 1986a, 1986b, 1992; Thorngate & Carroll, 1986; 
Thorngate & Edmonds, 2013).

Below we give a brief overview of Ordinal Patten Analysis accompanied 
by a few examples of its use. We offer three warnings before we begin. First, 
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OPA is exceedingly simple to understand and easy to calculate – sufficiently 
so to be dismissed as a  toy in comparison to its uber-omni-multivariate 
cousins. We, of course, do not share this belief. Second, OPA does not 
generate p-alpha levels needed for significance testing. It is certainly pos-
sible to generate estimates of these levels using resampling/bootstrapping 
techniques. But OPA is designed to provide a quantitative measure of fit, 
not to generate a  test of statistical significance. In this way, OPA is closer 
to Tukey’s (1977) ideas of exploratory data analysis, and to later notions of 
data mining, than it is to traditional statistical inference. While OPA can 
be employed to assist in constructing theories, it was designed to assess the 
validity of predictions derived from theories. This presupposes that theories 
exist. If you are hoping that OPA will mechanically generate clear theories 
from a cloud of observations, disappointment will prevail.

Ordinal Pattern Analysis by example
Let us begin with one of the simplest examples of Ordinal Pattern 

Analysis we can imagine. Suppose we want to assess a  theory of musi-
cal performance predicting that musicians will perform better during their 
recital than during their final rehearsal. We ask 12 cellists playing the 
same piece to record their final rehearsal and their recital performances, 
then ask a well-known music critic to rate the 24 recordings given to her 
in random order. When finished, the critic gives us her 24 assessments: 
scores on a  10-point rating scale ranging from 0 = terrible to 9 = superb. 
Table 1 shows her assessments.

musician A B C D E F G H I J K L average

sex M F F M F F M F M F F M

rehearsal 2 7 3 NA 4 8 1 6 6 9 4 5 5.0

recital 3 8 5 2 5 9 2 7 7 2 5 5 5.0

Tab. 1. Quality of musical performances in rehearsal and recital

We first note that the average ratings for rehearsal and recital are identi-
cal = 5.0. So if we performed a within-subject t-test on the rehearsal-recital 
rating differences, we would find t = 0.0 then conclude that we found no 
significant difference in the two means and thus no support for the theory.

But let us look again from the perspective of OPA. We cannot test 
the recital-is-better prediction on musician D because of missing rehearsal 
data; he forgot to turn on his recorder during rehearsal. But we have 
rehearsal-recital rating pairs for the 11 remaining musicians. Of these 11, 
one received the same rating (= 5) for both the rehearsal and the recital. 
What should we do with ties? The theory predicts recital rating > rehearsal 
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rating, not recital ≥ rehearsal. Still, ties are often ambiguous; they might, 
for example reflect a  judge’s measurement error rather than true perfor-
mance. OPA’s tradition is to ignore ties (for justifications, see Thorngate 
& Edmonds, 2013).

This leaves 10 musicians whose rehearsal and recital ratings can be com-
pared. What are the chances that, if we selected any of these 10 musicians 
at random, their rehearsal and recital ratings would show the order our 
theory predicts? We get the answer by counting the number of these musi-
cians with recital > rehearsal (a hit), and the number with recital < rehearsal 
(a miss). Nine of the ten showed an ordinal pattern of their ratings that 
matched the prediction: nine hits. One of the ten showed an ordinal pat-
tern that mismatched the prediction: one hit. So the probability that the 
prediction would generalize to our ten sets of observations is

p(a hit given the theory) = pHit = 9 / (9 + 1) = 0.90.

Without the theory, we would expect 50% of our guesses to be correct:

p(hit given a  random guess) = 5 / 10 = 0.50.

So using the theory has increased our predictive accuracy of the data set 
from 50% to 90%, an accuracy improvement of 80%. OPA uses an index 
of fit similar to Kendall’s Tau to express this improvement: The Index of 
Observed Fit (IOF).

IOF = (#hits – #misses) / (# hits + #misses) = (9 – 1) / (9 + 1) = 0.80.

The index pHit is vaguely similar to the amount of variance accounted 
for by employing the prediction. The index IOF is vaguely similar to the 
correlation between predictions and observations.

Is the increase in performance from rehearsal to recital statistically 
significant? We can in this case easily calculate, with a  simple binomial 
test,  the  probability of 9 or 10 musicians doing better in a  recital if the 
chance of a better recital is 1/2 (the classic null hypothesis, H0). This prob-
ability is:

p  = [10! / (9! + 1!) * 1 / 29 * 1 / 21] + [10! / 10! * 1 / 210]
= 9 / 1024 + 1 / 1024
= 0.01, 

a statistically significant difference. This illustrates again that what is true 
on average (no average difference between rehearsal and recital scores) 
is not always true in general. In more complex research designs we could 
also estimate this probability using resampling methods.
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But why test for significance at all? Recall that OPA is not designed to 
make inferences from samples to populations. It is designed to assess how 
well our predictions match samples of observations. If we wanted to assess 
the reliability of our match, we could collect data from more musicians to 
see if they replicated our findings.

To end this example, suppose the sex of each musician was also recorded, 
and suppose we wished to use this information to test the prediction of a sec-
ond theory: females will receive higher performance scores than will males. As 
seen in Table 1, our sample of 12 included seven females and five males. How 
can we test for sex differences in their performances? Let’s begin by asking 
two related questions: If we selected at random one male and one female 
from the 12 musicians, (1) what is the probability that the female would have 
a higher rehearsal score than would the male? (2) what is the probability that 
the female would have a higher recital score than would the male?

These probabilities are easy to calculate. We begin by generating a set of 
predicted ordered pairs, a POP set, for rehearsal performances. Musicians 
B, C, E, F, H, J, and K are female; A, D, G, I, and L are male. So an 
expression such as “{[B, C] > [A, D, G]}” means “We predict that female 
musicians B and C will have a more highly-rated performance than will 
male musicians A, D and G.” The POP set for rehearsal performances is:

{[B, C, E, F, H, J, K] > [A, D, G, I, L]}.

We will also make the same predictions for the recital scores.
Next, we simply count how many of the observation pairs match (hit) 

or do not match (miss) the predictions. Examples:

 Predict Observe Hit or miss?
 B > A B = 7, A = 2 hit
 B > D B = 7, D = NA NA
 B > G B = 7, G = 1 hit
 ... ...  
 C > A C = 3, A = 2 hit
 C > D C = 3, D = NA NA
 C > G C = 3, G = 1 hit
 C > I C = 3, I = 6 miss
 ...
 K > L K = 4, L = 5 miss

We then count the hits, misses and ties,

 total hits = 21
 total misses = 6
 total ties = 1
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And we calculate pHit and IOF

 pHit = 21 / (21 + 6) = 0.78
 IOF = (21 – 6) / (21 + 6) = +0.56.

The indices tell us that employing a  theory generating the prediction 
„females receive higher performance scores in rehearsal than do males” 
leads to 78% correct predictions, a  56% increase over what we would 
expect by flipping a coin.

We now shift from rehearsal scores to recital scores, repeating the same 
procedures as above.
 
Predict Observe Hit or miss?
 B > A B = 8, A = 3 hit
 B > D B = 8, D = 2 hit
 B > G B = 8, G = 2 hit
 ... 
 C > A C = 5, A = 3 hit
 C > D C = 5, D = 2 hit
 C > G C = 5, G = 2 hit
 C > I C = 5, I = 7 miss
 ... 
 K > L K = 5, L = 5 tie
 total hits = 23
 total misses = 6
 total ties = 6
 pHit = 23 / (23 + 6) = 0.79
 IOF = (23 – 6) / (23 + 6) = +0.59.

Finally, we calculate the combined hits, misses, and ties for both rehearsal 
and recital performances.

 total hits = 21+23 = 44
 total misses = 6+6 = 12
 total ties = 1+6 = 7
 pHit = 44 / (44 + 12) = 0.79
 IOF = (44 – 12) / (44 + 12) = +0.57.

From this we conclude that a  theory predicting females perform bet-
ter than males in both rehearsals and recitals increases the accuracy of 
our predictions from 50% to 79%, a 57% increase in predictive accuracy 
expected by predicting randomly.

Should we have averaged the rehearsal and recital scores of each musi-
cian before analysing their fit to the sex-difference prediction? We could 
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have done so. There is nothing mathematical in Ordinal Pattern Analysis 
restricting us to analysing only raw performance ratings, and often OPA 
analyses of averages result in very similar evaluations. Still, OPA makes it 
possible to analyse raw data, while traditional inference tests do not. This, 
in turn, allows us to test predictions both person-by-person and situation-
by-situation.

OPA and Big Data
The examples above were kept small and simple to introduce a  few 

basic OPA ideas and procedures. But OPA is not only suitable for the 
small and simple stuff; it is equally useful in analysing large data sets such 
as those labeled Big Data. Consider, for example, the analyses of national 
samples of social science data such as those collected in the European 
Social Survey or in frequent public opinion polls conducted in most coun-
tries. Many such surveys have samples exceeding 10,000, which, as noted 
previously, virtually guarantees that all traditional statistical tests will be 
statistically significant, leading to hundreds of head-scratching conclusions 
such as “French females under 30 with a university degree in a  social sci-
ence who live in cities with fewer than 5,000 residents earned significantly 
less money (t = 89.5, p < 0.0001) in 2013 than did Swiss males over 45 with 
a  trade school diploma who spoke German in a city of over one million.”

So what? Finding such patterns is only half of science. The other half 
is to explain why the patterns occur, and this requires testable theories. 
Where do testable theories come from? Not from the theory fairy, nor from 
a theory boutique. At some point they must be invented, and their invention 
is more likely when it is preceded by keen observation and thought. OPA 
is no substitute for thought, but it can be useful for assisting keen observa-
tion by directing our attention to regularities or patterns in data we have.

One of the most common uses of traditional statistics is to uncover cer-
tain kinds of patterns in the data we have, particularly patterns of statistically 
significant differences in means. But nature does not reveal all her patterns 
in these mean differences. OPA can often be useful for detecting some of 
the other patterns, including patterns in raw data produced by individuals 
over time, and patterns that change within individuals across situations.

Consider one of several ways we can employ OPA to uncover temporal 
and situational patterns of individuals hiding in large data sets – patterns 
not revealed in regression lines or differences in averages. Suppose some 
(fictitious) Omninational Social Survey asked 1,000 people to provide some 
demographic or personality information, then to rate their happiness each 
month for 3 years (M1, M2, ..., M36). They indicate their happiness on 
a  common rating scale: extremely unhappy = 0 ... 100 = extremely happy. 
At the end of our study each person has given us 36 happiness ratings. 
A  sample of our hypothetical data set is shown in Table 2.
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Person
Months

M1 M2 M3 M4 M5 M6 M7 ... M35 M36

Alice 16 20 31 10 19 35 41 ... 57 55

Brian 59 46 67 48 NA 49 77 ... 75 69

Carla 35 37 24 NA 21 21 28 ... 14 11

Dan 90 92 80 20 NA 64 62 ... 50 40

Elaine 50 70 33 NA 25 30 10 ... 15 20

Frank 20 20 25 15 NA 25 30 ... 55 60

Tab. 2. A hypothetical sample of monthly happiness ratings

What patterns should we look for? Some might be found in traditional 
correlations between background information (age, sex, SES, etc.) and the 
average happiness ratings. There is nothing wrong with this traditional 
approach, but it is likely incapable of detecting many other patterns. So 
let us look among the ordinal properties of our data set for additional 
patterns – patterns revealed either across people or over time.

We begin by searching for time-related patterns across people. Our goal 
is to tally for all possible 36x35/2 = 630 pairs of months how many people 
in each pair show an increase, decrease of no change in happiness ratings. 
Comparing months M1 and M2 in Table 2, we count four people increasing 
happiness ratings (Alice, Carla, Dan and Elaine), one decreasing (Brian), 
and one tied (Frank). Comparing M1 and M3 we find that three people 
increased their rated happiness (Alice, Brian and Frank) while the three 
others’ ratings declined. We continue tallying in this way, comparing M1 
with M4, M5, ... M36. Then we start comparing M2 with M3, with M4, 
M5, M36. Eventually, we finish all 630 pairs by comparing M35 with M36 
(Alice, Brian, Carla and Dan decline while Elaine and Frank increase).

We can then add our 630 tallies, calculate pHit and IOF, and examine 
the probability of an increase or a  decrease in happiness ratings for any 
two time periods, M1 through M36, we choose. But given the wide indi-
vidual variation in the wiggles and curves of the happiness ratings, we are 
likely to find that the probability of happiness going up or going down is 
about 0.50 (IOF about 0.00), suggesting no strong ordinal pattern overall.

Still, there are more data to be mined, so let’s zoom in to search for 
patterns in more detail. Consider a curious aspect of the ratings in Table 2. 
During months M4 and M5, five of the participants did not record their 
ratings; otherwise, they did so religiously. What might have caused the inter-
ruption? Notice also that the next available rating after M3 went down for 
all six of the six people (Alice’s declined from 31 to 10; Carla’s declined 
from 24 to 21, etc.). This suggests that something might have occurred to 
all six people at the end of M3 – a general downer – that interrupted their 
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normal activities and suppressed their ratings. And this, in turn, might lead 
us on a  search for a natural disaster, a  local tragedy or news item unique 
to M3 that caused the happiness dip. If one were found, we might then 
search all 630 paired comparisons for additional dips affecting most people 
and a  similar search for what economists would call exogenous events. 
Tukey called this detective work.

There’s more. Curiosity about the variability of happiness wiggles and 
curves such as those illustrated in Table 2 might lead us to examine individual 
differences. Can the people in the survey be clustered or classified according 
to their happiness trajectories? One way to answer the question is to devise 
a measure of similarity or dissimilarity between all possible pairs of survey 
participants, then employ some form of cluster analysis to group them. There 
are many different indicants of similarity, and they can generate somewhat 
different clusters. One of these indicants does for rows in Table 2 what our 
previous 630 month-by-month comparisons did for columns.

How similar or different are Alice and Brian? Use the order of Alice’s 
36 happiness ratings to predict Brian’s, then use pHit as a measure of their 
similarity. A pHit of 1.00 indicates that the ranks of Alice’s and Brian’s 
ratings fluctuate in unison; a  pHit of 0.00 indicates their fluctuations of 
ranks are mirror images of each other. Do the same to determine how 
similar or different the wiggles of ratings between Alice and Carla, Dan, 
Elaine, etc., between Brian and Carla, Dan, etc. are and continue for all 
pairs of people. After all (1000 × 999) / 2 = 499,500 distances between par-
ticipants are calculated, submit them to a cluster analysis programme, and 
examine the resulting dendrogram for more clues about what distinguishes 
the groups and subgroups shown.

Conclusions
Thus ends our small exposition of Ordinal Pattern Analysis basics. Limits 

of time and space prevent us from showing more than a  fraction of what 
OPA can be adapted to do. We refer you to references below in case you 
wish to learn more.

Unfortunately, OPA will not automate insight, nor will it find meaningful 
patterns in meaningless data, nor will it uncover causation in correlation, 
balance your bank account, or cook breakfast. Still, it will provide an alter-
native means of exploring aspects of data that traditional statistical analyses 
normally ignore. Its use will reduce the chances of addressing the wrong 
questions about your data – of committing what Mitroff and Featheringham 
(1974) call an error of the third kind.

We encourage you to try the OPA on some of your own data to get 
a sense of what it might, or might not, do for you. If you wish to use a small 
computer programme, written in R, to speed your tallies, please contact 
the senior author for an electronic copy: warren.thorngate@carleton.ca.
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