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INTRODUCTION

The analysis of natural language, resulting in the so called illocutionary
logic! needs an adequate concept of proposition. Such a concept in the simplest
form was alrcady presented in D. Vanderveken, What is a Proposition®
using model-theoretical methods. Moreover. a large philosophical background
related to that concept is contained there.

In this paper, the same concept of proposition is analysed from a different
point of view. using some algebraic methods.

Generally speaking, a proposition is an ordered pair. whose first element,
called its ,,content™. is a set of so called atomic propositions, and the second
one, called ..truth conditions™ is a set of some subsets of the set of atomic
propositions. The propositions form an algebra similar to some formal
language, that language, for which the set of propositions is the set of senses.
The analysis of that algebra results on the one side, in enlarging the notion of
.strong implication™® to the notion of special consequence relation, on the
other side, in some representation of that algebra and conceiving a proposition
in a new way. ’

' Cf. D. Vanderveken. Meaning and speech acts. Vol. 1-2. Cambridge University Press,
1990.

2 Cf.D.Vanderveken, What Is a Proposition, ..Cahiers d'épistémologie™ 1991. No. 9103,
Universit¢ du Québec & Montréal.

3 Ihid.
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I. THE ALGEBRA OF PROPOSITIONS

Let U be any non-empty set of objects and I be any non-empty set of
indices or points, which represent possible worlds or contexts of utterances.
Then following Carnap, Ul (the set of all functions C: 1 — U) is the set of
individual concepts, and for any n = 1, 2, ..., (P(U")! (the set of ail functions
Ry: I = P(Un)) is the set of n-ary relations in intension or simply attributes.

First we define the set U, of the so called atomic propositions. An aromic
proposition u € U, is an ordered pair, whose first clement is the union of two
sets: one-element set containing any single attribute, and finite set of individual
concepts; the second element of an atomic proposition is some subset of the set
1, as follows:

Uy = {<{Rp Ci. oo Cas {i € L<CI(). v Cali)> € Ry} >:R, €
(PUNL Cp. ... CoeUlln = 1.2, .. }

Now we can define inductively the set of propositions as the smallest subset
U, of the set P(U,) x P(P(U,) satisfying the following conditions:

@) {<{u}, [[u)> 1 ue Uy} € U, where for any W g U,
W) = (W e &(U,: W c W}

(ii) for any P € U, <idy(P), $(U,) - ida(P)> € Up;

(i) for any P, Q € Up,, <id)(P) u idi(Q), ida(P) n idx(Q)> € Up,
where for any <A, B> € P(Uy) x P(PU,), idi(<A. B>) = A,
idy(<A, B>) = B.

Now. the algebra U, = (Up, w.A .V . —) generated by the set
{(u): u € Uy}, where for any P, Q € Uy

-P = <id|(P), P(U,) - idyP)>,

P AQ = <id|(P) v id|(Q). idoP) n idx(Q)>.

PVQ =—«(~PA~Q = <idi(P) U id|(Q). idxy(P) U idxQ)>,

P—-Q=-PvQ = <idi(P) uid(Q) (P(Uy) - ida(P)) U ida(Q)>.
and for any u € Uy, (u) = <{u}, [{u})>, will be said to be the algebra of
propositions.

It is seen that any element P of the algebra of propositions i.c.
a proposition P is an ordered pair, whose first element is the finite non-empty
subset of the set of atomic propositions Uy; it will be called in the sequel as the
content of the proposition P, the second element of that pair is a subset of
P(U,) which will be called as the truth conditions of the proposition P.
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2. LANGUAGLE AND ITS INTERPRETATIONS

It is well known* that a proposition should be considered simultaneously as
a constituent of a conceptual thought (independently on the language) and as
a sense of a sentence - that sentence, which expresses that thought. In § 1 we
have just tricd to give a formal concept of a proposition independently on the
language. now we can try to describe a proposition as a sense of a sentence. To
that aim we choose a special formal language such that the sct U, of
propositions would be the set of senses of the formulas of that language. The
language is a part of the usual first-order language - without quantifiers,
individual variables and functional symbols.

Let Const and Pred be the set of individual constants and predicate
symbols respectively. By the language we will understand the algebra
L = (L. .A,Vv, —) freely gencrated by the set At of free generators of the

form: ry(ey. ... ¢). where r, is n-ary predicate symbol and cj. .... ¢, are
individual constants, n = 1, 2, ...

By the interpreting function of the language L we understand an assignment

s: Const U Pred U At - Ul u {J {(PUMN:n = 1.2, .} u U,
such that for any c, ¢, ..., ¢, € Const, r; € Pred:

s(c) € UL, s(ry) € (PUM, s(rpfcye vy ) = <{s(rp), s(cp). ..

s(cp)}. 41 € I <s(e)), .y s(en)i)> € s(ry))}>.

Taking into account the homomorphism hg: L — I_Jp defined as follows: for
any A € At., hy(A) = (s(A)), we can say that for any o € L, the proposition hy(«)
is the sense of sentence « with respect to s.

3. A CHARACTERIZATION OF THE CONTENT
AND OF THE TRUTH CONDITIONS OF A PROPOSITION

In order to characterize the content of a proposition let us introduce the
obvious definition of the occurrence of an atomic proposition in a proposition,
as follows: for any atomic proposition v:

(1) v occurs in (u) iff v = u,

(2) v occurs in - P iff v occurs in P,

(3) v occurs in PAQ iff v occurs in P or v occurs in Q.

Then: for any P € U, id|(P) is the set of all atomic propositions occurring
in P.

4 Cf. for instance: ibid.
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Notice that the content of any proposition is always a finite non-empty
subset of U,.

To the aim of characterizing the truth conditions we will use the concept of
proposition as a sence of sentence.

For any interpreting function s consider the function g $(U,) — {0, 1}k,
where  {0.1} is the set of truth-values. as follows: for any
W eP(U,). g(W) L —{0.1} is the classically admissible valuation on L such
that for any A € At

a(W)A) = 1 iff s(A) e W.

Lemma 3.1. For any interpreting function s, for any « € L and
W € U, : W e idy(hg(a)) iff g(W)a).= I

Proof (induction on the length of «). Let s be any fixed interpreting
function of L and W < U,.

1. Let « € At. Then hyx) = (s(@)) and conscquently W e iday(hg())
T W e [{s()}) ifT s(x) € W ill gg(W)a) = 1.

2. Let a be of the form: - f, where § € L is such that

() W e ida(hy(B) il g(W)B) = 1.

Then W e idathg(- f)) iIff W e ida(=hy(B) iff W ¢ ida(hg(f))
T g(WYB) = 0 iff g(WH=f) = | by (%) and the fact that go(W) is
classically admissible.

3. Let x be of the form: B A, where (x) for ff and for y is
assumed. Then W e idathy(f A 3))  iff W e ida(hy(B) A hy(y)) iff

W e ida(hy(BY) N idaths(y)) iff gWHB) = gW)(7) = | iff
gWIB A7) = L n

Lemma 3.1 enables to give a simple characterization of the set ida(P) for
any proposition P. Indeed. for given P one can choose the formula 2 and the
interpreting function s such that P = hy(a). So if for instance we consider the
proposition P of the form: (-, (u;) A (u2)) — (uy), then we should take into
account the formula (-, Ay A As) —» AL AL As € At. and the interpreting
function s such that s(A;) = uj, i = 1, 2. Then idy(P) is the family of all
W < U, such that the functions gy(W) associated with W form the set of all
classically admissible valuations on L which take the value 1 on the formula

AL N A - AL

4. SOME PROPERTIES OF A PROPOSITION

First of all we should definre when a proposition P is true or false. If we
consider a proposition of the simplest form:

(<iRpy, Ciu oo Cujs {i € I <C (i), ..., Cu(i)> € Ry(i)}>), we can ob-
viously say that it is truc in a point i € 1 iff <Cy(i). ..., Cp(i)> € Ry{i).
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Taking into account the classical way of defining the truth for the propositions
of the form: =P and PAQ we obtain the following definition:
(i) for any u € Uy, (u) is truc in i iff 1 € idy(u),
(i) for any P e Up.-iP is true in i iff P is false in i,
(iii) for any P. Q € U,. PAQ is true in i iff
P and Q are true in i.
However we should connect the fact that a proposition is true or false with
its truth conditions. The following Lemma establishes such connection:
Lemma 4.1. Let for any i € I. U} = {u € Uy i € ida(u)}. Then for any
proposition P, P is true in i € 1 iff Ui € idx(P).
Proof. Straightforward by induction concerning on the form of a propo-
sition P. L]
We can introduce another important properties of a proposition as follows:
a proposition P is said to be a rwuiolog)y iff ida(P) = P(U,):
- P is a contradictory proposition ift id«(P) = @
P is a necessury proposition iff for each i € 1. P is true in i:
P is an impossible proposition iff for cach i e 1. P is false in i.
According to Lemma 4.1 it is casily seen that any tautology is a nccessary
proposition. but not conversely, and similarly any contradictory proposition is
always impossible. although not conversely.

5. THE CONSEQUENCE RELATIONS ON THE SET
OF PROPOSITIONS

Now we intend to define two concepts of consequence relations on the set
ol propositions: onc of them. called .strict™ or simply _usual™ consequence
relation (it is related to the connective of strict implication, so we use the term
.strict™) although defined. let say, in the natural way. is not realized from the
point of view of human being carrying out the practical reasonings: the second
consequence relation, called ..strong™. posesses such properties that it can be
taken as a formal ground of the practical reasonings.

Let I' = Uy and P e U,. We will say that T strictly entails P (T - P in
symbols) iff for any i € I. P is true in i whenever cach Q € [ is truc in i.

In that way we have for instance: {P] ¢ PvQ. which is not good from the
point of view of practical reasoning.

The strong consequence relation is closcly related to the algebraic structure
of the sct of propositions. So first we will start from some properties of the
algebra U,

Lemma 5.1. For any equality ¢ in the signature (,,A, V. ). ¢ is an equality
in the algebra U, iff ¢ is a Boolean equality and the set of variables occurring
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in the left term of o is identical with the set of variables occurring in the right
term.

Proof. Assume that we have the following variables: xg. X1, ..., and let
o be of the form: f(x;. ..., x; ) = &(Xj,, .-\ Xj,)» Where Xj . ... Xj, (Xj, ... xj, ) are
all the different variables occurring in the term f(x;. ..., Xi) (&(Xj,. ... Xj,)-

(=): Assume that o holds in the algebra U,. First suppose that
i X)) # {Xjpsoos Xj, ) Let x5, ¢ {X, . X, } for some ke {I....n}. Notice
lhat according to thc assumption, for any propositions Py, ... P,

Qu.  1d{(f(P.....Py)) = id1(g(Q).....Oy)).  which  implies  that
1d,(P,)u Luidy(Py) = id;(Q)) u ... uid|(Qp). Thus, substituting: X5, |— P for
any £=1...m, x; |- P for any &= 1, ...,n, & # k, where P is any proposmon
and Xikl—' Q, where Q is such that id|(Q) ¢ id|(P), we obtain that
idi(P)uid|(Q)=id|(P}.  which is  impossible. Analogously  if
L

In order to show that ¢ must be Boolean equality, notice that for any
propositions Py, ... Py ida(f(Py, ... Pp)) = £(ida(Py). ... ida(Pp)) for any func-
tion f of n variables in the signature (,,A,V, —), where f is like f but
set-theoretical operation. So the equality: f(xy...., xp) = g(X}. .... Xp) holds in U,
iff it is Boolean.

(«<): by the last argument of the proof (=). u

Following Lemma 5.1, the equalities: '

XA X=X,

XAy=y AX,

XA(YAZD=XAYAZ
are satisfied in Up, so we can consider the reduct (U, A) of U, as
a meet-semilattice.

We shall say that for any @ # ' € Uy, Pe Uy, T strongly entails
P (' P in symbols) iff P e [[). where [I') is the filter generated in the
semilattice (Up, A ) by the set T. We also put {Pe U, @+ Pj = .

The following obvious lemma explains strong consequence relation in
terms of the content and of the truth conditions:

Lemma 5.2. For any & # I'c U,, PeUy TP iff there exists
{P}....Ph} T such that

id(P) € id{(P}) v ...uid(P,) and

ida(Py) N ... nida(Pp) < ida(P).

Proof Notice that for any @#TcUp PelU, Pe[l) iff
PyA ..., AP, <P for some P),...,P,el’, where < is the partial ordering of
the semlldttlce (Up,A), e itis deﬁned as follows: for any P, Qe Up:P < Q lff
PAQ=Piff 1d](Q) < idy(P) & idy(P) < id2(Q).

One can show using Lemmas 4.1 and 5.2 that for any @ # I' = U, Pe Up.
[~ P implies that I' <€ P, but not conversely; for instance in general
{P} =P v Q does not hold.
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6. A REPRESENTATION OF PROPOSITIONS

Now we are going to give another but equivalential to just presented, an
algebraic approach to the concept ol proposition. A proposition will be
conceived less intuitively but its structure will turn out more simple - we would
be able to identify a proposition with an ordered pair consisted of two finite
sets.

Let us introduce for any non-empty and finite set W < U, the following
cquivalence relation on the set P(U,): for any V.V e #(U,), V = V(W) iff
WAV =WaAV.,

We will need the following lemma concerning with the propositions:

Lemma 6.1. For any proposition P and any W € idy(P): [W]ig (p) & ida(P).
where for any finite £V U, and any W < U,
Wl = {W' € U; W= W(V)-

Proof. Straightforward by induction on the length of a propo-
sition P. L]

We will use Lemma 6.1 in the proof of the following:

Lemma 6.2. For any finite @#W < U, and anyWes P(W):
<W.J AWl W eW > e U,

Proof Let W = (uj...u} € Uy and W= {W . W0k
be ;my family of subsets of the set W.

Let k > 0, that isW # @. For any j = 1.k let Wj={uw,..., u;
W W UHI .ut, where f(j) € '0 1. ....n} (in casce whcn iy =0.
W= 0 and stmilarty when f(]) =n W-W;=0).
We show that: <{up...uy}. [Wily V..U [Wilw > =((uhA.. A(ur(n)
AUl DA ALY V() A ’\("mn)’\ .(umm)/\ A (ub)).
Denote  the last  proposition as P(,. It is obvious that
id (U A A YA W YA A ) = {ugeug) any §o= 1ok,
Wth]‘l means that id|(Po) = fup.....uy). Next notice that Wje ld‘\((LIJ)/\

/\(uln l)/\ (w, e DA oA (u)). which implies that for dny j=1. k
Wje 1da(Py). So let Ve Wile U ... U [Wile. then Wj = V(W) for some j.
hencc due to Lemma 6.1: Ve ld»(Po) And convcrqelv if 'V e ida(Pg). then
Veida((u) A ... /\(urm)/\ (u" ) A A (u)) for some j. which implies
that WnV W and (W - W)nV—Q SO WnV=
(W, o (W W))nV—(W AVIUW W) nV)=W;=Wn W, that
is V € [Wj v S Wiy U o U [Wiye Fma“y: Wil V.. U [Wiw = ida(Po).
. Let k=0, that is '747'= @. 1t is obvious that in case:
<{u|.....un}. T > = ((uDA (u)) AU AU)A .. Afay). 2
Now consider the following algebra V, similar to Up:
Vo=(Vp. 1AV —)
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where Vp, = { <Ww>: W e P (U)W S D(W)]. Pin(Uy) is the family of all
non-empty and finite subsets of U,. and for any <W >,

<WaWai> € Vy

L <WLW S = <W L 2(W) >,

<WLH > A<Wa, ¥h> = <W i u Wa [V u Vy o VieW, Vaelh
V| n W'_1 = V: gl \V1}>.

<WLW > V<W2.V3> =.(, <W|.W1 > A= <W_7_.'b72>),

<SW W > = <WHIh> = L <WLW > V< Wah>.

Theorem 6.3. The algebras Up. V), arc isomorphic.

Proof. We show that the function g: U, — V,, defined as follows: for
any Pe Uy, g(P)= <id|(P), W nid(P) : Weidy(P)}>, is the required
isomorphism.

Following Lemma 6.2 we can consider the function [ V, — U, defined as
follows: for any <W.W> € Vj.

f<WW>)= <W. [Ji[Wly: WeW]> = <W. (Ve Uy VAWel|>.
Then for any <WW>eV, «fi<WW>)=<W. (VAW
VeV EeUpVnWelW] > = <Wa>.

Moreover. {or any Pe Up flg(Py) = <idy(P).|J {{Wlia,py
W e{Wnid(P): Weida(P)}}> = <id(P). |J{[Wliq,p): W €ida(P)}>.
According to Lemma 6.1, U’:[W]idl(p): W e id+(P)] < ida(P), the converse
inclusion is obvious, so f(g(P)) = P.

Thus the function g is 1-1 and onto. In order to show that g preserves the
operation , notice that:

(D 2Gd(P)) =W nid(P): W e idaP)] U W nidi(P): W ¢ id(P)].
and

(2) W A id(P): W e ida(P)} » W n idi(PY: W ¢ ida(P)} = O, any
Pe Up (in order to prove (2) suppose that it does not hold: then there exist
Wy g 1da(P). Wa ¢ ida(P) such that Wy = Wa(id(P)). so by Lemma 6.1 we
obtain a contradiction).

In that way we have for any P e Uy

g P) = <id|(\P). {W nid|( . P): Weida(,P)}> = <id((P). {W nid;
(P): W ¢ id+(P)} > = <id(P).2Gd(P)) - {W nid|(P): W e ids(P)} > = g(P).
due to (1) and (2).

And further. for any P.Q € U, we have:

P AQ) = <idi(PAQ) WA id(PAQ): Weidry(PAQ) > =
= <id((P) U id Q). (W nid|(P)) U (W nid(Q)): WeidaP) &
W e idy(Q)} >. But obviously the following inclusion holds:

HW A id(P)) U (W nid(Q)): Weidy(P) & WeidyQ))
< {Vyu Va: Vi e {W nidi(Px WeidyP)} &

Vae IW nid)(Q): W e idy(Q)} & V| n idj(Q) = Va n idy(P)}.
And in order to show the converse inclusion notice that for any

W, € ida(P). W3 € id2(Q):
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(3 Wi nidy(P) = (W) n id)(P)) u (W2 n id)(Q))) N idy(P), and

(4) Wa nid((Q) = (W] nid((P)) U (W3 n id((Q))) » id)(Q), whenever
(W1 nidi(P)) mid(Q) = (Wa n id1(Q)) n id(P). Further put W=
=(W; nid|(P)) U (W7 nid(Q)). According to Lemma 6.1, from (3)
and (4) we obtain that W eidx(P) and W e€idxQ). Thus g(P AQ) =
= <id1(P) v id(Q), (VI u Vi Vi e {W nid|(P): W e idy(P)} &
Vo e {W nidi(Q): WeidyQ)} &V nidi(Q)=Vynid((P)}> =
= <1d1(P) {Wnid|(P): We 1d2(P)}> A<id(Q), {W n id|(Q): W €
€ idyQ)} > = &(P) A g(Q).

Obviously we can treat a proposition as an ordered pair of the form
<W,W>. One can express all the properties of the propositions and of the
consequence relations in the new way, for instance, <W.,W> is a tautological
(contradictory) proposition iff W=P(W) (W=©@); for any <W, W >
<Wp, Wa> e Vy, {<WLW >} <Wol> iff Wy € W, &
(VoW Vew} i et
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ALGEBRAICZNE UJECIE POJECIA ..PROPOSITION"

W artykule analizuje si¢ pojecie ,.proposition”™ (sadu w sensie logicznym) wprowadzone
w pracy D. Vandervekena What Is a Proposition, stosujac metody algebraiczne. Analiza ta
umozliwia glebsze zrozumienie tego pojecia, prowadzi m. in. do uogdlnienia pojecia ,,mocnej
implikacji” (§5), jej gléwnym rezultatem jest pewna reprezentacja pojecia ,.proposition™ (§ 6).



