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Abstract: This paper applies non-linear  methods to analyze and predict the daily 
open S&P index which is one of the most important stock index in the world. The 
aim of the analysis is to quantitatively show if  the corresponding time series is 
a deterministic chaotic one and if one or more days ahead prediction can be  
achieved. These results make the present work a valuable tool for traders investors 
and funds. 
 
 
Introduction  

 
Physical models and theories from the field of  non-linear Dynamics and  are 
used in order to describe, analyze, explain and solve financial problems.  The 
use of Physical laws in Economics, as well as the use of Physical principles 
in human behavior will give us additional tools to solve economic problems, 
model economic systems and predict economic time series as the daily S&P 
index. Commonly used and well documented methods, which include  non-
linear time series analysis by Kodba et al. (2005), cross correlation by Garas 
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and Argyrakis (2007), hierarchal clustering by  Coronnello et al. (2007) are 
presented in the paper. 

Alexander and Giblin (1997) enrich the nearest neighbour method by 
constructing a multivariate nearest neighbour prediction method. Using high-
frequency data, they empirically show that the chaos in financial markets can 
be detected under multivariate model. A broad literature review on multivar-
iate embedding methods can be found in Alexander. Recent evidence on 
implication of the chaos theory in financial time series prediction comes 
from the works by Mike P. Hanias. Firstly, Hanias et al. (2006) present 
a guide of how chaos is used in time series prediction. Hanias et al. (2007) 
presents  evidence on how chaos theory can be used for prediction stock 
returns in the Athens Stock Exchange. Hanias et al. (2008) also employed 
chaos theory to show if the Istanbul Stock Exchange has chaotic dynamics. 
Ozun et al. (2010) uses chaos theory in Athens and Istanbul Stock Exchange, 
and empirically shows that it has informational efficiency in semi-strong 
form. In the case when a system presents deterministic chaotic behavior, we 
can find the number of first order differential equations that described its 
evolution. The appearance of nonlinear structures is important to the ques-
tion of out of sample prediction, and this is done in this paper as Hanias and 
Curtis (2008) shown. For this purpose we have applied the method proposed 
by Grassberger and Procaccia to evaluate the invariant parameters of S&P as 
the correlation and minimum embedding dimensions. Then, we have applied 
the results from the non linear analysis to predict the corresponding time 
series with high accuracy.  

 
 

S&P Data   
 

The daily S&P index is presented as a signal x=x(t) as it shown at Figure 1. 
It covers N=5833 data from 03/01/1990 to 25/02/2013. The sampling rate 
was Δt=1 day. The data corresponds to closed value every  night. 
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Figure 2. Time Series of S&P index 
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Source: own elaboration.  

 
 

Theoretical Framework  
 

In order to evaluate the afore mentioned time series, we have used the meth-
od proposed by Grassberger and Procaccia (1983a) and Grassberger and 
Procaccia (1983b) and successfully applied in similar cases, Hanias and 
Magafas (2012) and Hanias et.al. (2007). According to Takens (1981) the 
measured time series was used to reconstruct the original phase space. For 
this purpose, we calculated the correlation integral, for the recorded signal, 
defined by the following relation as Kantz and Schreiber (1997) proposed, 
for  r0 and  N , 
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where: 
Ν is the number of points, 
Η is the Heaviside function, 
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 m is the embedding dimension, 
The summation counts the number of pairs ),( ji XX


for which the distance, 

(Euclidean norm), 
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ji XX


 is less than r, in an m dimensional Euclidean space. 

and W is the Theiler window. As Theiler pointed out, if temporally correlated 
points are not neglected, spuriously low dimension estimate may be obtained. 

 
In the above equation, N is the number of the record  data (daily S&P in-

dex) , here N=5833, iX


is a vector in the m dimensional phase space given 
by the following relation: 

  

iX


 = {xi,xi-τ,xi-2τ,…..xi+(m-1)τ}                                  (2) 
 

The vector iX


 {xi,xi-τ,xi-2τ,…..xi+(m-1)τ}, represents a point to the m di-
mensional phase space, in which the attractor is embedded each time, where 
τ is the time delay determined by the first minimum of the mutual infor-
mation. In our case  τ=58 time steps as shown in Figure 2. 

 
 

Figure 2. Mutual Information I vs time delay τ 
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Source: own calculation.  
 

Using the value τ=58 as an optimum delay time for the reconstruction of 
phase space in eq (1) and also as the Theiler window the same value, we 
divide this space into hyper cubes with a linear dimension r, and we count all 
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points with mutual distance less than r. It has been proven by Sprott (2003), 
Abarbanel (1996) and Ott et.al. (1994) that if our attractor is a strange one, 
the correlation integral is promotional to rν where v is a measure of the di-
mension of the attractor, called the correlation dimension. Then the correla-
tion function is related to the radius with a power law 
 ఔ and ν is the slope of the logC(r) versus logr plot. Since the data setݎ~(ݎ)ܥ
will be continuous, r cannot get to close to zero. To handle this situation, one 
plots logC(r) versus logr and selects the apparently linear portion of the 
graph. The slope of this portion will approximate ν. Practically, one com-
putes the correlation integral for increasing embedding dimension m and 
calculates the related ν(m) in the scaling region.   

Using the value τ=58 as an optimum delay time , we  reconstruct the 
phase space. The correlation integral C(r), by definition, is the limit of corre-
lation sum of equation 1 for embedding dimensions m in the range from 1 up 
to 10 and shown in Figure 3.  
 
 
Figure 3.  Correlation dimension v vs. embedding dimension m. The values of m 
increased from top to bottom 
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Source: own calculation. 
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In Figure 4  the corresponding average slopes v are given as a function of 
the embedding dimension m, indicating that for high values of m, v tends to 
saturate at the non integer value of v=2.3. The decimal value of v as well as 
the saturated behavior as a function of m reveals chaotic behavior of the 
stock index S&P.   

 
 

Figure 4.  Correlation dimension v vs. embedding dimension m 
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Source: own calculation. 
 

With this value of v, according to Abarbanel (1996), the minimum em-
bedding dimension is m=3, so the smallest dimension that contains the at-
tractor is 3. Sprott (2003), has shown that 2m may be sufficient so the topo-
logical embedding dimension could have a range from 3 to 6. So the mini-
mum embedding dimension of the attractor for one to one embedding is 3 
4,5 or 6 and it depends on the optimum prediction. The value of m indicates 
the number of time dependent variables that determine the system evolution. 
 
 
Quantitative Evidence 

 
It is well known that chaotic time series is not long term predictable due to 
their sensitive dependence on initial values. However, it is short-term pre-
dictable, and prediction of chaotic time series is very important in real-world 
applications such as in financial forecasting. Based on the reconstructed state 
space, one may introduce various approaches for predicting chaotic time 
series. 
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We will apply a simple prediction model that works locally on the 
reconstructed deterministic data in the state space. It is described fully 
by Hanias and Curtis (2008). From the signal of equation (2), we can con-
struct an m-dimensional signal m

miiii
m
i Rxxxxx   )},....,,,{(}{ )1(2  . 

The reconstructed m-dimensional signal projected into the state space can 
exhibit a range of trajectories, some of which have structures or patterns that 
can be used for system prediction and modeling. Essentially, in order to pre-
dict k steps into the future from the last m-dimensional vector point }{ m

Nx , 

we have to find all the nearest neighbors }{ m
NNx  in the -neighborhood of 

this point. To be more specific, let )( m
NxB  be the set of points within  of 

}{ m
Nx  (i.e. the -ball). Thus any point in )( m

NxB  is closer to the }{ m
Nx  than 

. All these points }{ m
NNx  come from the previous trajectories of the system 

and hence we can follow their evolution k-steps into the future }{ m
kNNx  . The 

final prediction for the point }{ m
Nx  is obtained by local weighted least 

squares  over all neighbors’ projections k-steps into the future  according to 
Schouten et.al. (1994), Sugihara and May (1990), Peters (1991) and Ozun 
et.al. (2007). 

We used the values of τ and m from our previous analysis so the appro-
priate time delay τ was chosen to be τ=58. The embedding dimension m = 5 
follows from the Taken’s embedding theorem, and was used for the state 
space reconstruction and gives better results than m=3,4,6. We choose the 
optimum number of  neighbors to be 9 three times the value of minimum 
embedding dimension m, as a rule of thumb. In sample actual and predicted 
time series for k=5, time steps ahead are presented in Figure 5.  

Out of sample actual and predicted time series for k=5 time steps ahead 
are presented in Figure 5. In Table 1, we can compare the predicted values 
and the actual values for k=5 days ahead. As it is clear from these date of 
Table 1 and Figure 6, the prediction up to two days is very successful and for 
the longer time up to five days seems to follow the trend of the index, even 
though it shows progressive deviation. In any case, this overall possibility 
makes this study an important tool for  investors, traders and professionals of 
markets.   
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Figure  5. In sample actual and predicted time series for k=1 time steps ahead 
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Source: own calculation. 
 
 
Figure  6. Out of sample Actual and predicted time series for k=1 time steps ahead 
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Source: own calculation. 
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Table 2. Some original and predicted data (In sample and out of sample)  
 

Time units Original Predicted 

5815 1498.11 1500.88 

5816 1501.96 1502.58 

5817 1507.84 1502.02 

5818 1517.93 1500.41 

5819 1509.39 1498.47 

5820 1512.12 1502.56 

5821 1511.29 1504.04 

5822 1495.71 1507.49 

5823 1487.85 1510.34 

5824 N/A 1514.8 

5825 N/A 1502.64 

5826 N/A 1503.66 

5827 N/A 1511.86 

5828 N/A 1459.1 
 
Source: own calculation. 
 
 
Conclusions  
 
In this work, we study the S&P index using the Chaos Theory. The evaluated 
results show that the this index follows the Chaos theory, presenting the 
following characteristics correlation dimension 2.30 and embedding dimen-
sion 5. The former proves that the system is a low dimension deterministic 
and the latter suggests that the number of time dependent variables that de-
termine the system evolution is 5. Using the reconstructed strange attractor, 
we can predict the future values of S&P index for two days’ time distance.  

Finally, the great value of this work consists in the possibility of very ac-
curate predictions of S&P within two days and to follow the trends up to five 
days, since in the  markets of derivatives (specifically futures, options as 
well as ETFs) this kind of information is very valuable.  We strongly believe 
that this work is a very useful tool in the markets of derivatives.  
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