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Abstract 

Using transaction data on the DAX index options, we study the jump-diffu-
sion option pricing model and an option pricing model under fairly nonlinear 
generalized autoregressive heteroskedasticity N-GARCH (1,1). The paper also 
contains an overview of some of jump-diffusion process estimation methodolo-
gies and a survey of empirical research on the time series of DAX index and series 
of DAX options. Our empirical evidence indicates that adding the random-jump 
feature to the random walk model of asset return outperforms the N-GARCH 
pricing option model in valuing short-term options, whereas the N-GARCH mo-
del does better than the jump-diffusion model in pricing longer-term options. 

Introduction 

Since Black and Scholes published their seminal article on option pricing in 
1973, there has been an explosion of theoretical and empirical work on option 
pricing. Most papers maintained Black and Scholes' assumption of geometric Brow-
nian motion, i.e that asset prices are stationary and log-normally distributed. 
However the accuracy of the hypothesis has already been questionable for ages. 
Early empirical studies of market stock prices (reported in Mandelbrot 1963, Fama 
1965, Praetz 1972, among others) concluded that the log-normal law is an inade-
quate descriptor of stock returns. It is widely acknowledged that many financial 
markets exhibit a greater degree of kurtosis and the presence of non-zero skew-
ness than is consistent with the geometric Brownian motion model of Black and 
Scholes. It is also well known that implied volatilities obtained from option prices 
under the Black-Scholes model are typically higher for out-of-the-money options 
than for otherwise identical at-the-money option (the so-called "volatility smile"). 
It is also typically the case that the differences in implied volatilities become less 
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pronounced as options with a greater time-to-maturity are considered. The exi-
stence of the "volatility smile", as Bates (1996) and others observed, is strongly 
suggestive of the presence of leptokurtosis in the conditional return distributions. 
Evidence of conditional leptokurtosis also comes from the ARCH/GARCH litera-
ture in the form of fat-tailed residuals1. 

Among the many alternative models that have been proposed in the finance 
literature to account for these systematic departures from the assumptions of the 
Geometric Brownian Motion model, two have become especially popular in re-
cent years: models of jump-diffusions, and models of stochastic volatility. Models 
of jump-diffusions i.e. models in which stock prices are generated by a geometric 
Brownian motion with Poisson jumps superimposed on them, were initially pro-
posed by Merton(1976); more recently, they have been studied by Ball and Torous 
(1985), Ahn (1992), Amin (1993), among others. The stochastic volatility models 
also involve a generalization of the Geometric Brownian Motion process by allo-
wing the volatility of the return process to itself evolve stochastically over time. 
Recent papers adopting such an approach include Wiggins (1987), Melino and 
Turnbull (1990), Stein and Stein (1991), Amin and Ng (1993), Heston (1993) and 
others. In addition, Joion (198), Bates (1996) and Cao, Bakshi, Zhiwu Chen (1997) 
have empirically estimated models of returns as mixtures of jump-difusions com-
bined with stochastic volatility. 

At a purely intuitive level, it is not hard to check how jump-diffusion and sto-
chastic volatility models could each lead to return distributions that exhibit skew-
ness and leptokurtosis. Skewness in jump-diffusions should arise from the 
distribution of jump-sizes. Moreover, the presence of jumps in the return process 
creates outliers which add fatness to the tails of the distribution; thus, returns 
under a jump-diffusion should always be leptokurtic. In stochastic volatility mo-
dels, skewness should arise if there is non-zero correlation between the stochastic 
processes driving changes in the returns and the volatility respectively; for in-
stance, positive correlation between these process should result in positive skew-
ness, since high returns will be accompanied by high volatility, and low returns 
by low volatility. Leptokurtosis should arise from the volatility of volatility. 

Empirically, however, it is not known whether and by how much each genera-
lization improves option pricing. The purpose of the present article is to fill in this 
gap and conduct a comprehensive empirical study of the relative merits of two 
option pricing models. 

Option pricing models: Jump-diffusion and N-GARCH (1,1) model 

Typically, the option pricing models in a continuous-time framework have 
employed special cases of the following general system of stochastic differential 
equations of the form: 
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dSl = l/z-A/tJdt + aSf<FNt + J(t)dq(t) (1) 

with the volatility 

satisfying 

da = //Jo)dt + v(a)dWr/ (2) 

and the instantaneous nominal discount rate 

d r = //r(r)dt + vr(r)dWr (3) 
where 

S( is the option's underlying asset price, with instantaneous expected return 
// per unit time; 

a is a volatility state variable; 

r is the instantaneous nominal discount rate; 

W, Wff, Wr are correlated standard one-dimensional Brownian motions defined 
on some filtered probability space (£2, T, P); 

}(t)is the percentage jump size (conditional on a j u m p occurring) that is 
lognormally, identically and independently distributed over time, with the un-
conditional mean//r The standard deviation of ln[l+/(f)] is a-, 

q(t) is a Poisson jump counter with intensity A, that is, Pi[dq(t)=l]=Jdt and 
Fr[dq(t)=0]=l- Adt 

I d is the elasticity of variance. 

This general specification nests the constant elasticity of variance, stochastic 
volatility, stochastic interest rate and jump diffusion models. Let us agree to de-
note the "objective" probability measure which governs the real model (1-3) by 
the letter E The fundamental problem in pricing European and American options 
is the derivation from the actual distribution of P the underlying asset price of an 
equivalent "risk-neutral" distribution that summarizes the prices of relevant Ar-
row-Debreu state-contigent claims. The "risk-neutral" probability distribution is 
denoted henceforth by the letter Q. Options are then priced at the discounted 
expected value of its payoff taken under the risk-neutral distribution Q: 

where qtT is the conditional density function of the random variable ST represen-
ting the underlying asset price at maturity T under the measure Q given the past 
history up to time t. Thus E c denotes expectations taken under the Q-measure. 
There is a natural economic interpretation of the formula (4). We see that the 

fT M 

E,eSi [maxfjSj. - JC|,o)] = e~J/<""'" Jmax(|SV - K^j, T (ST )dST (4) 
o 
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price of the option, given today's date t and today's underlying asset price, is 
computed by taking the expectation of the final payment EQt and then discoun-
ting this expected value to the present value using the discount factor e. The im-
portant point to note is that when we take the expected value we are not to do 
this using the objective probability measure P. Instead we shall use the Q-measu-
re. This Q-measure is sometimes called the risk adjusted measure, the "risk-neu-
tral" measure or the martingale measure, while the formula (4) is sometimes 
referred to as the formula of risk neutral valuation. Suppose that all agents are 
risk neutral. Then all assets will command a rate of return equal to the discount 

r 
factor J r( u )du wz, i.e. in a risk neutral world the stock price will actually have 

Q-dyna'mics. Futhermore, in a risk neutral world the present value of a future 
stochastic payout will equal the expected value of the net payments discounted to 
present value using the above factor. Observe, however, that we do not assume 
that the agents in such a model are risk neutral, and these two densities - the 
historical density P which describes the random variations of the underlying as-
set price S between t and T, and the "risk-neutral" density Q - are a priori different 
and, except in very special cases such as geometric Brownian motion and con-
stant elasticity of volatility for which options are redundant assets that can be 
replicated by a dynamic trading strategy in the underlying asset and a riskless 
bond, the equivalent risk-neutral distribution can then be derived via no-arbitra-
ge conditions, otherwise the arbitrage arguments do not enable us to calculate 
one of these given the other. 

In other words, the formula (4) only says that the value of the option can be 
calculated as if we lived in a risk neutral world, and the options cannot be evalu-
ated in such an enviroment by means of arbitrage-free framework pricing witho-
ut further assumptions. Technically, however, in more complicated cases deriving 
the appropriate risk-neutral probability measure in those cases could be done but 
it requires the pricing systematic asset, volatility, interest rate, and jump risk, which 
in turn requires additional restrictions on distributions and preferences. Intuiti-
vely, the market prices for additional risks represent the return-to-risk trade-off 
demanded by investors for bearing the additional risks of the stock. For such com-
plicated processes, options will usually elude arbitrage-oriented pricing2. This 
process of stock weights eliminating the linear diffusion risk cannot, however, 
simultaneously remove the non-linear additional risk and vice versa, because the 
option price is a convex function of the stock price.3 A non-hedgeable residual risk 
remains, which one is only able to eliminate via portfolio strategies under very 
restrictive assumptions (for example existence of a portfolio completely correla-
ted with the residual risk). In such cases, without any additional restictions one 
can evaluate the option in market equilibrium on the basis of its characteristics as 
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well as on the basis of preferences and endowment of an investor representing 
the capital market. 

In literature of pricing assets some economists such as Hull and White (1987), 
Johson and Shanno (1987), and Scott (1987) assummed that additional risks are 
typically nonsystematic and therefore have zero price, or imposed a tractable func-
tional form on the risks' premium with extra (free) parameters to be estimated 
from observed option prices. The second approache that was used by others such 
as Wiggins (1987), Melino and Turbull (1990), Bates (1988,1990), Nail and Lee (1990) 
is to assume the representative investor has time-seperable power utility, and 
preferably log utility, so that Cox, Ingersoll and Ross (1985) separability results 
can be invoked to price the additional risk. 

The special case of this general specification was given by Black and Scholes 
(1973) who remarked that when the price of an underlying asset is described by 
a geometric Brownian motion process: 

— = udt + odW 
S ' 

(5) 

where /<r and a are constant, the price of European call option with strike price K 
and time of maturity T is given by the formula II(t) = F(t,S(t)), where: 

F(t,s) = sN[dJt,s)] - e-r(T-l> KN[cUt,s)] (6) 

Here N is the cumulative distribution function for the N[0,1] distribution and 

A ( 1 ^ 
In 

K 
r + -<TtCT-t) 

£X sJT — t 

d2 (t, s) = d, (t, s) - CTyjT -1 

(7) 

(8) 

The original Black-Scholes formula has been and continues to be the domi-
nant option pricing model, against which all other models are measured. The 
dominance of the Black-Scholes model is reflected in the fact that the implied 
volatility - the value of s that equates to the appropriate option pricing formula to 
the observed option price - has become the standard method for quoting option 
prices. However the method used by Black and Scholes relies in an essential way 
on the hypothesis that the underlying asset follows geometric Brownian motion 
(4), which does not adequately describe the real dynamics of asset prices. 
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A proposed jump-diffusion model 

The theoretical option pricing formula. Diffusion processes as a model of stock 
price movements are characterized by infinitesimally small changes, and are for 
that reason, continuous, although not differentiable, sample paths. Price jumps 
deviate significantly from this description. On the one hand, they do not vary 
permanently, but only at certain times. On the other hand, their movement has a 
non-infinitesimal extent. Jumps are an important feature of the price processes of 
financial assets, and are especially pronounced for certain types of assets. For that 
reason, Merton's groundbreaking work, which explicitly admits jumps in the un-
derlying asset prices for pricing standard European options, has generated a pro-
found impact on the finance profession. Merton priced options on jump-diffusion 
processes under the assumption of diversifiable jump risk and independent lo-
gnormally distributed jumps. Subsequent work by, among others, Jones (1984), 
and Bates (1991) indicates that Merton's model with modified parameters is still 
relevant even under nondiversifiable jump risk. This section presents a general 
jump-diffusion model to price options. The model is based on the following as-
sumptions. 

Assumption 1: The nondividend-paying asset price S(t), for any t, follows 
a stochastic differential equation with possibly asymmetric, random jumps: 

^ ^ = [//(f) - Xfij ]dt + a(t)dW + J(t)dq(t) (9) 
S(t) 

where 
ju{t) - the instantaneous expected return on the asset; 

o(t) - the instantaneous volatility conditional on no jumps; 
W - the standard Wiener process; 
J(t) - the percentage jump size (conditional on a jump occurring) that is lo-

gnormally, identically, and independendtly distributed over time, with uncondi-
tional m e a n T h e standard deviation of ln[l+/(f)] is ay That means: 

ln[l + J(t)] i.i.d.N(ln[l + / / , ] - y 2 cx]',<T2j) 

A is the frequency of Poisson events; and q(t) is a Poisson counter with inten-
sity A: 

Pr [one jump occurs in the time interval (f, t+dt)] = Adt; 
Pr [more than one jump occurs in the time interval(f, t+dt)] =• o(dt); o(dt) is 

a function of greater order than dt, such term will be negligible if dt is infinitesi-
mally small; 

Pr[no jump occurs in the time interval (f, t+dt)] = 1 -Adt 
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jump-risk. A Black-Scholes hedge will not be riskless even in a continuous-time 
setup. However, if the jumps component represents nonsystematic risk, a portfo-
lio which removes the risk of diffusion component (i.e., dW does not appear in the 
return process of the portfolio) will have a zero "beta". By the CAPM, the expec-
ted return on that portfolio must equal the riskless rate. The jump risk will there-
fore not receive a risk premium. 

With an increase in complexity, assumption 2 may be replaced by some alter-
native assumption. For example, let the considered process differ from some work 
on option pricing under jump-diffusion processes (Merton (1976), and Ball and 
Tourous (1983,1985)) in an important direction. That is, the jumps are allowed to 
be asymmetric, i.e., with nonzero mean. Values of the expected percentage jump 
size //, greater (less) than zero imply that the distribution is positively (negatively) 
skewed relative to geometric Brownian motion. This approach is common in the 
existing literature (e.g., Bates (1996)), and it can be formulated as follows. 

Define W as a optimally invested wealth of a representive investor and 

as her/his indirect utility of wealth at time t under the optimal consumption plan 
C(t), which is a solution to the so called Hamilton-Jacobi-Bellman equation.4 

<P(W(T)) is a bequest utility function in T, which measures the utility of having 
some money left at the end of the period, and U(C(t), t) denotes a utility function 
at time t under consumption function C(t). 

Having established the stock price dynamics, we now turn to the dynamics of 
the option price. Suppose that the option price, P(t), can be written as a twice-
continuously differentiable function of the stock price and time: namely P(t) -
F(S(t), t). According to Bates (1991), if the stock price follows a jump-diffusion 
process described in (9), then the option price (call or put) F (written as a function 
of time until expiration instead of time) must satisfy: 

x¥(W,t) = max 
{c(0} 

E ju(C(f),t)dt + Q(W(T)) 
t 

i V i 
0 = -(7(t)2S(tfFss + p(t)-AE -Ł/(0 S(t)Fs + F-g(S(t)J)F + 1 

(12) 

+ AE ^(F(S(t)J(t),t)-F(S(t),tj) 

subject to the boundary conditions: 
F(0, t) = 0, 
F(S(T), T) = max(0, | S(T)-K |) 
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where g(S(t), T) denote the equilibrium, instantaneous expected rate of return on 
the option when the current stock price is S(t) and the option expires at time T in 
the future, K is the exercise price of the option, W,A, is the mariginal utility of dollar 
wealth of the market-average representive investor, and = *P„,(w(l+ ./(*)).*)• 
The indirect utility function TWMi + J(t)),t) plays the decisive role in risk neu-
tralizing stock's drift and jump terms, and hence in the pricing of jump risks. 

As it was shown, equation (12) is a mixed partial differential-difference equ-
ation, and although it is linear, such equations are difficult to solve. In order to 
apply the described valuation option equation (12) one has to follow two steps: (i) 
solve explicitly for lF(W(t)) - the indirect utility function the Hamilton-Jacobi-Bel-
lman equation from the inverstor's consumption-portfolio problem, and (ii) sub-
stitute the indirect utility function into the fundamental valuation equation and 
solve for the option prices. Unfortunately, one typically cannot find a closed-form 
solution for the indirect utility function, unless the investor has a log period utili-
ty or the investment opportunities are non-stochastic. For this reason, virtually all 
existing equilibrium valuation models for option prices assume two classes of uti-
lity functions: the power (particularly the log utility function) and the exponen-
tial utility class. Economically, these two classes are interesting because the power 
utility functions form the constant relative risk aversion class while the exponen-
tial utility functions represent the constant absolute risk aversion class. By con-
struction, jump-risk is systematic: all asset prices and wealth jump simultaneously, 
albeit by possibly diffrent amounts. Bates (1991,1996) finds that under a traditio-
nal assumption of preferences, that is, if the representive investor has a power 
utility function 

where p is a constant discount factor, y is the coefficient of relative risk aversion, 
which is constant, independent of both wealth and the state variables in this case5 

- then the risk-neutral movement of the underlying asset price follows a jump- 
diffusion process similar to the one under assumption 1 and the price of option 
satisfies the following partial differential equation: 

U{C{t\t) = e-<* C(r)r"'"1 

7 - 1 

(13) 

where 
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d2k = dlk -7a2T + kaj 
European puts have an analogous formula: 

n p ( 0 = e~rTXPr*{£ jumpŝ E* [max(^ - ST ,0) I k jumps] 
(15) 

Parameters estimation. In applying option pricing formulae (14-15), one has 
first to determine the parameters: the spot volatility and the structural parame-
ters, which are unobservable. It has been common to apply the described formu-
lae by means of the option-implied parameters based on the model. The interest 
in implied paramters reflects the fact that options are forward-looking assets, with 
prices sensitive to distributional moments such as future volatility. A major pro-
blem with implied parameter estimation is that there is no associated statistical 
theory. However, one can in principle apply econometric tools such as maximum 
likelihood or the generalized methods of moments to obtain the required estima-
tes from time series data on the underlying asset price (e.g., Ball and Torous (1985). 
However, such estimation may not be practical or convenient, because of its strin-
gent requirement on historical data. To follow this approach here we derive the 
analytics required for maximum likelihood as well as the analytics for the method 
of moments estimation. 

1. The generalized method of moments. The moments of the jump-diffusion 
process offer valuable insights. First, the behavior of the options price may be 
inferred form a study of the moments. Second, the moments are easily used in 
method of moments estimation models. 

Let mf denote the i-th moment of the distribution N (in [1 + //y ] - , < 7 j j . 

Let us consider the asset return process Z(t) of the form (11) as a risk-neutral 
process. 

In the jump-diffusion process Z(t), the first four moments are given by the 
following expressions: 

Lemma 1 

(16) 
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E[Z(0 2 ] = [<J2 + ]A? + [u + Am( f (Ar)2 

e [ z (r )3 ] = Ami Ar + 3[u + Jer2 +^n2y](Aï)2 + [// + ylm/ f (Ar)3 

E[Z(0 4 ] = Ar + [3(0"2 + f + 4^/n37 X " + ' W |A?)2 + 

+ ó|// + V f [er2 + h n { ](Af)3 +\fi + h n { ] ( A r ) 4 

(17) 

(18) 

(19) 

Since the proof of this lemma are straightforward but quite technical, detailed, 
and lengthy, generally they have been omitted in the interests of clarity and are 
available on request from the author. 

Let k. denotes the i-th sample cumulant of the distribution of asset returns 
Z(t). Using the relationships between sample cumulants kv k2, x3 and k4 of a di-
stribution and its moments6, after some algebra from equations (16 -19), it can be 
shown that 

Àm- — -ju 
At 

4 m ' + v)+ V = -1  

' At 
2 1 

Aim3 + 3mv) — — 
At 

(20) 

(21) 

(22) 

fC, 
Aim4 + 6 m 2 v + 3 v 2 ) = — 

v ; At 
where 

m 

v = a 

V = <7 

(23) 

Since kv ..., may be determined by observation, therefore setting the sample 
cumulants equal to the population cumulants yields four algebraic equations in 
the unknown parameters (X,//., v ,v). Successive substitutions in (23) readily pro-
vide the following equation 
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36(xr, y4 

ka 

12 k \ 
k: 

l 3v l-
- juAtf Kt-/jAt 

- 0 (24) 

This equation can be easily solved by using MATHEMATICA - a software pro-
duct designed by Wolfram Research Inc. The correct root of equation (24) v could 
then be used to obtain three other estimates u. A and yby substituting it into equ-
ations (20-23). It may be shown that 

Hj = exp 

fr-MOV + % 
- 1 (25) 

A = 
rjAt 

v - K~ 

k\/{k, - / M f ) 2 - 6 v 2 

kJM 
At k]I{k, -juAtf -6v2 AT, - ^Af 

— 2v 

(26) 

(27) 

Press (1967) estimated jump-diffusion processes with zero instantaneous expec-
ted rate of return,/? = 0 for a sample of monthly returns to ten NYSE listed com-
mon stocks over the period 1926 through 1960, using the method of cumulants, 
however he frequently obtained negative estimates of the variance parameters v 
and v. Becker (1981) similarly estimated jump-diffusion processes for 47 NYSE 
listed common stocks over the period 15 September, 1975 through 7 September, 
1977, and in opposition to Press's work, he set the mean logarithmic jump size 
equal to zero, Ju) = 0 and also often obtained negative estimates of the variance 
parameters v and v. Note that a negative estimate of variance is strictly the result 
of using the generalized method of moments rather than being caused by a mo-
del specification error, 

2. The maximum likelihood estimation procedure. Parameter estimation by 
the generalized method of moments is known to yield consistent estimators. Ho-
wever, these estimators are not always efficient but it may often be possible, be-
cause of the large quantities of market data avaiable, to ignore efficiency and rely 
upon consistency. Because the "moment" approach often provides negative esti-
mates of the variance parameters, very few papers have employed this method to 
estimate the return asset processes as of current writing. Most of papers dealing 
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asset price volatility is usually unstable through time. Black (1976), Christie (1982), 
among others, discovered an inverse correlation between asset returns and chan-
ges in volatility This peculiar feature of asset return suggests that the asset price 
volatility itself should be modelled by means of a stochastic process. The pricing 
of options under this condition is, therefore, an important problem. Typically, in a 
continuous-time framework, volatility o(t) is assumed to follow a diffusion pro-
cess. Let the asset price S be given by the expression 

dS(t) = /s(S(t), t)dt + a(t)S(t) dW (31) 

with the volatility a satisfying 

do(t) = /*Ja(t), t) dt + vdWa (32) 

then the price function P(t) = ¥(s,a,t) of a European option can be shown to satis-
fy the following partial differention equation (cf. Hull and White, 1976) 

Ft + ̂ G2s2Fss + rsFs-rF + U2Faa +{ji9+ Xv)Fa =0 (33) 

where A(a, t) represents the market price for volatility risk, which needs to be 
exogenously specified. For some specifications of the dynamics of stochastic vola-
tility and the market price for risk, a closed-form expression for the option's price 
is available, otherwise, numerical procedures need to be employed. Since this 
approach is beyond the scope of this article, for more details we refer to Hull and 
White (1987,1988), Johson and Shanno (1987), Stein and Stein (1991), Heston (1993), 
Ball and Rome (1994), Bakshi et al. (1996), among others. 

Still another approach to the modelling of stochastic volatility is formulated in 
a discrete-time framework based in so-called general autoregressive conditional hete-
roskedastirity - GARCH. We say very little about (G)ARCH models because several 
excellent surveys on the subject have appeared for some time including those by 
Engle and Bollerslev (1986), Bollerslev, Chou and Kroner (1992), Bolerslev, Engle 
and Nelson (1994). 

There are many different types of ARCH models that have a wide variety of 
applications in finance. The two most popular ARCH process are generalized 
ARCH (GARCH) (Bollerslev (1986)) and exponential GARCH (EGARCH (Nelson 
(1991)). The technical distinctions are beyond the scope of this article; however, 
researchers have tended mostly to use the GARCH process and its variations for 
option pricing. We now review the basic GARCH option pricing model of Duan 
(1995). 

Let St be the asset price at date t, and v(t) be the conditional variance, given 
information at date t, of the logarithmic return over the period [t, t+1] which 
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(without loss of generality) we call a "day". The dynamics of prices are assumed 
to follow the process 

where ry is the one-period, continuously compounded return on the risk-free as-
set, A is a constant unit risk premium, vt+1 is the conditional variance of the asset 
return, and [sf: t = 0, 1, 2, ...] form a sequence of independent standard normal 
random variables with respect to measure P. Equations (34 - 36) state that condi-
tional on time t information, the price at time t+1 is a drawing from a log-normal 
distribution with 

The conditional variance vl+1 for the period [t+1, t+2] depends on its level in 
the previous period, vt , and on the standard normal innovation over the time 
period [t, t+1]. 

The particular structure imposed in equation (34) is the nonlinear asymmetric 
GARCH (NGARCH) process with the typical GARCH parameter restrictions: 
fi0 > 0 , f l > 0, fi2 > 0, that has been studied by Engle and Ng (1993), and Duan 
(1995). Parameter q determines the "leverage effect", the nonnegative ^captures 
the negative correlation between asset return and conditional volatility innova-
tions that is frequently observed in stock markets.7 Duan (1995) has estabilished 
via an equilibrium argument that the underlying asset price dynamics under the 
locally risk-neutralized probability measure Q can be written as 

(34) 

v I + i = A + M - O f , for f = 0 , 1 , 2 , ... 

e . — ^ N i 0,1) 

(35) 

(36) 

v a r , ( 0 = E , [ s , 2 + 1 p ' - l ] var, 

S 1 
(37) 

= / ? o + A v , +piv,(e,-Q-X)1, fort = 0 , 1 , 2 , . . . (38) 

^ — ^ A T O ) (39) 
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The above model has five unknown parameters, n a m e l y ^ fljr fi2 the sum (A + 
0), and the initial variance vg. In order to apply the formula (46), we first need to 
estimate the GARCH parameters Q = {fl^ fir fl2, A + (A. then to derive analytical 
expressions for the four moments of the temporally aggregated returns. 

The estimation of parameters of the process is carried out by maximum likeli-
hood, using daily series of underlying asset returns Z = (Z(t), t = 0, 1,..., T) as 
data and the BHHH algorithm (Berndt, Hall, Hall, Hausman (1974)), given the 
return series and initial values of e0 and an appropriate u08.The log-likelihood func-
tion we have to maximize for the process under consideration is the following 

Data and estimation results 

Description of the data 

The data. The focus of this study is on stock index options, particular on DAX 
Index options. The DAX index option contract (DAX) is traded on the Deutsche 
Terminbose and is by far the most actively traded index option contract in the 
European continent. Data on DAX Index option prices from September 16, 1991 
through April 30,1997 were avaiable from Deutsche Terminbose. Data on the DAX 
stock index for this period were hand-collected from The Financial Times Journal. 
The considered index is value weighted. A complication we faced is that the de-
scribed data set is the daily closing value levels, and the DAX index is not adjusted 
for dividends. This is not ideal from a theoretical point of view since the use of 
closing prices is subject to the criticism of nonsynchronous trading. This problem 
arises when there is a failure to observe the option price and the price of the un-
derlying index simultaneously. However, since all of our strike prices are in the 
neighbourhood of at-the-money options, which are the most heavily traded, we 
would expect that the dividend adjustment and the nonsynchronous price pro-
blem would not greatly affect our results. 

Several exclusion filters are applied to construct the option price data. First, 
options with less than 7 days to expiration may induce liquidity-related biases, 
and these are included from the sample. Second, to mitigate ^the impact of price 
discreteness on option valuation, option prices lower than $ - are not included. 
Then the option data, call and put, is each divided into several categories accor-
ding to either moneyness and term to expiration. Let S denote the DAX index 
level of given day, and K is the exercise price. A call option is then to be deep out-
of-the-money (D-OTM) if its S/K < 0.94; out-of-the-money (OTM) if S/K G [0.94, 
0.97); slightly at-the-money (S-ATM) if S/K G [0.97, 1.0); at-the-money (ATM) if 

(47) 
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S/K G [1.0, 1.3); in-the-money (ITM) if S/K G [1.3, 1.6); and deep in-the-money 
(D-ITM) if S/K > 1.6. By the term of expiration, an option contract can be classi-
fied as very short-term (< 30 days); short-term (30-60 days); medium-term (60-90 
days); slightly long-term (90-180 days); long-term(180-270 days); and very long-
t e r m ^ 270 days). The proposed moneyness and maturity classfications produce 
36 categories of call options for which the empirical result will be reported. 

Descriptive Statistics. The daily returns of DAX Index under consideration 
are continuously compounded returns. They are calculated as the difference in 
natural logarithm of the closing index value for two consecutive trading days. 
The total number of returns for the considered period is 1430. The descriptive 
statistics for the data are in Table 1. 

It can be observed that the distribution is negatively skewed, indicating that it 
is non-symmetric. Futhermore, it exhibits high levels of kurtosis, which indicates 
that the distribution has fatter tails than a normal distribution. The Kolmogorov-
Smirnov D-Statistics to test the null hypothesis of normality has also been calcu-
lated, and it rejects the normality assumption at the significance level of one per 
cent. The results confirm the well known fact that daily stock returns are not nor-
mally distributed, but are leptokurtic and skewed. 

Table 1. Descriptive Statistics (DAX Stock Index over the period 19 Septermber 1991 to 30 
April 1997. The data is daily in frequency) 

Sample size 1430 

Mean 0.00051197 

Standard deviation 0.01014582 

Skewness -0.64333599 

Kurtosis 12.0844185 

Komogorov-Smirnov D-statistics 2.47456923 

The critical value for test of normality 1001=1.62 
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form, therefore we employ the joint estimation procedure of implied volatility 
and implied dividend discussed by Choi and Wohar (1992) to solve for the im-
plied volatilities and the implied dividends for the index options from the divi-
dend-adjusted Black-Scholes option pricing formula. The dividend-adjusted 
version of Black-Scholes pricing formulas are given as follows 

nc=[S-£]#(</,)- Ke~r(T-')N(d2) 

n P=Ke~r{T-,)N(-d2)-[S-S]N(-di) 
where 

(51) 

(52) 

In 

4 = 

s-s 
K 

+ r+l-<r?(T-t) 

oJF^ t 

d2 — dl —<7^T — t 

The estimation procedure of implied volatility and dividend is as follows, ha-
ving calculated implied volatilities and implied dividends for each of three given 
pairs of call and put options with the same maturity but with different strike pri-
ces (slightly in-the-money, out-of-the-money, and at-the-money), we then avera-
ge the implied dividends and combine this average with the call and put option 
formulas (51 - 52) to find the three different corresponding implied volatilities. In 
the next step, these three implied volatilies are averaged and combined with the-
se call and put formulas to find the three implied dividends. The procedure is 
repeated until both average implied volatility and average implied dividends co-
nverge for all option with different expiration terms for each day in our sample. 
Finally, the implied dividends over the options, all having different exercise pri-
ces but the same expiration date are averaged to gain final the present value of 
implied daily dividend of a given day. The present value of implied daily divi-
dend of given day is then used to find the final implied volatilities of options, all 
having different exercise prices but the same expiration date. 

The above presented method of calculating volatility may be viewed as an 
average of the expected daily return variances for the underlying index over the 
time period until expiration. Table 2 presents the average of the present value of 
implied dividends for different maturity of options for the period Septermber 19, 
1991 through April 30,1997: the average of absolute present value of implied divi-
dends and the ratio of the average annualized implied dividend to the average 
DAX index. The six-year average DAX index is about 2089.7092. The average year-
ly dividend yields for DAX index long-term options are 3.32% and 1.59%, respec-
tively. Our results confirm the fact observed in respect of New York Stock Exchange 
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Composite Index and Standard & Poor's 500 by Choir and Wohar in their work, 
that is while the average of the estimated long-term implied dividends appear to 
be reasonable, the short-term and mid-term option on the average seems to ove-
restimate the true dividend yield, which may indicate that there are other factors 
to be considered in determining short-term and medium-term option prices not 
included in the Black-Scholes option pricing model. 

Table 2. The average of present value of implied dividends (PVD) DAX Stock Index over 
the period 19 September 1991 through 30 April 1997 

The average of: Days-to-Expiration The average of: 

< 30 30-90 90-180 > 180 
absolute PVD 
percentage PVD 

8.419278 
4.0328% 

11.972860 
4.5835% 

12.414370 
3.3203% 

16.699410 
1.5980% 

Table 3A and table 3B report the average Black-Scholes implied volatility valu-
es across five moneyness and four maturity categories, for calls and puts respec-
tively as well as for both the entire sample period and different subperiods. The 
sample period extends from September 1991 through April 1997 for a total of 38,427 
calls and 40,606 puts. As was shown, regardless of the sample period and term to 
expiration, the implied volatility exhibits a strong U-shaped pattern as the call 
options go from D-OTM to ATM and then to D-ITM or as the put options go from 
D-ITM to ATM and then to D-OTM, with the deepest ITM call-implied and the 
deepest OTM put-implied volatility taking the highest values. Practioners refer to 
this phenomenon as the volatility smile, where the so-called "smile" refers to the 
U-shaped pattern of implied volatilities accross different strike prices. Futhermo-
re, regardless of option type, the volatility smiles are strongest for short-term 
options (reg, indicating that short-term options are the most severely mispriced 
by the Black-Scholes model). For a given sample period and moneyness range, 
the volatility smile is downward-sloping in most cases and exhibits a slight U-
shape in some cases, as the term to expiration increases. These findings of clear 
moneyness-related and maturity-related biases asscociate with the Black-Scholes 
are consistent with those in the existing literature (see for instance Rubinstein 
(1985), Taylor and Xu (1993), Bates (1996)...). 

It is widely belived that volatility smiles have to be explained by alternative 
models, for instance a model with stochastic volatility or model jump-diffusion. 
As the smile evidence is indicative of negatively-skewed empirical distribution 
returns with excess kurtosis, an alternative model must be based on a distributio-
nal assumption that allows for negative skewness and excess kurtosis. However, 
other arguments to explain the smile and its skewness (jump transaction costs, 
bid-ask spreads, non-synchronous trading, liquidity problems ...) have also to be 
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taken in account for both theoretical and empirical reasons. For instance, there 
exists empirical evidence suggesting that the most expensive options (the upper 
parts of the smile curve) are also the least liquid; skewness may therefore be attri-
buted to specific configurations of liquidity in option markets. 

Note that the implied volatility of calls in a given category is similar to the 
implied volatility of puts in the opposing category, regardless of sample period or 
term to expiration. Such similarties in pricing structures exist between calls and 
puts mainly due to the working of put-call parity. For this reason, basing the di-
scussions to follow solely on results obtained from DAX calls should not present 
a biased picture of the empirical study. 

Jump-diffusion parameter and N-GARCH (1,1) parameter estimation 

The jump-diffusion parameters for each day of the period from 01 January, 
1997 through 30 April, 1997 were estimated using the maximium likelihood me-
thodology. The log-likelihood function in equation (30) is used for the estimation. 

from 01 January, 1997 through 30 April, 1997. From the graph it is known that the 
period under consideration was quite quiet. The N-GARCH (1,1) parameters for 
all days of the period from 01 January, 1997 through 30 April, 1997 were also esti-
mated using the maximum likelihood method. 

results 

Figure 3 presents the probability density function of ' n 
S 

over the period 

PD: 

o . l 

Figure 3. Probability density function of In—^ - over the period from 01 January, 1997 

through 30 April, 1997 
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Table 3A. The average of implied volatility of call options 

Sample Moneyness Days-to-Expiration Subtotal 
period period 

S/K < 30 30-90 90-180 > 180 
09-1991 D-OTM < 0.94 18.3778 15.2745 15.5236 16.0120 1168 
12-1992 OTM 0.94-0.97 13.1107 13.6433 15.6023 17.2806 1474 

ATM 0.97-1.03 12.8510 15.5127 17.5279 17.9546 4095 
ITM 1.03-1.06 18.6378 17.5460 18.1745 18.8697 906 

D-ITM > 1.06 27.1001 20.8704 20.9728 20.8332 480 
Subtotal 1656 3851 1868 748 8123 

01-1993 D-OTM < 0.94 14.9665 13.0217 13.7544 14.3017 170 
12-1993 OTM 0.94-0.97 12.7058 13.3906 14.2439 15.6243 1004 

ATM 0.97-1.03 12.4557 14.9128 15.7716 15.6193 3735 
ITM 1.03-1.06 19.5215 15.7938 16.0636 15.9880 1182 

D-ITM > 1.06 30.5859 20.6710 17.6514 16.3828 1449 
Subotal 1346 3487 1814 893 7540 

01-1994 D-OTM < 0.94 18.4924 17.6581 17.4881 17.3234 804 
12-1994 OTM 0.94-0.97 15.7915 17.4476 18.1439 18.1417 1260 

ATM 0.97-1.03 15.8776 19.0631 19.5158 18.1960 3645 
ITM 1.03-1.06 21.4101 19.1520 18.8840 18.6301 878 

D-ITM > 1.06 30.2682 22.5731 19.7614 17.7853 769 

Subtotal 1807 3654 1479 446 7386 
01-1995 D-OTM < 0.94 16.7070 13.6754 13.5885 13.6581 582 
12-1995 OTM 0.94-0.97 12.4109 12.7742 13.4934 14.4316 1263 

ATM 0.97-1.03 12.3013 13.6403 14.1815 14.0703 3982 
ITM 1.03-1.06 18.6035 13.8730 13.3868 13.7317 956 

D-ITM > 1.06 29.2705 16.9996 14.3688 13.8093 517 

Subtotal 1620 3619 1423 638 7300 

01-1996 D-OTM < 0.94 13.2682 10.6509 11.1428 11.1925 471 
12-1996 OTM 0.94-0.97 10.1735 10.2411 11.0578 11.7940 1132 

ATM 0.97-1.03 10.3191 11.2143 11.8176 11.4541 4434 
ITM 1.03-1.06 19.1087 11.9110 11.4506 10.9138 1187 

D-ITM > 1.06 32.2043 16.6571 12.3966 9.9096 854 

Subtotal 1732 3910 1519 917 8078 
09-1991 D-OTM < 0.94 17.3663 14.4450 14.8138 13.8804 3195 
12-1996 OTM 0.94-0.97 12.9638 13.4953 14.7542 15.4828 6133 

ATM 0.97-1.03 12.7749 14.9174 15.8428 15.4127 19921 
ITM 1.03-1.06 19.3497 15.7286 15.4138 15.0267 5109 

D-ITM > 1.06 30.0363 19.7674 17.0789 15.4142 4069 
Subtotal 8161 18521 8103 3642 38427 
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Table 3B. The average of implied volatility of put options 

Sample 
period 

Moneyness Days-to-Expiration Subtotal 

K/S < 30 30-90 90 -180 > 180 
09-1991 D-OTM < 0.94 21.1242 17.3121 15.5373 15.4396 514 
12 -1992 OTM 0.94-0.97 15.4592 14.9862 13.9506 13.6814 963 

ATM 0.97-1.03 12.3398 13.1945 13.4133 13.2185 4060 
ITM 1.03-1.06 15.9127 11.3548 11.2305 12.0241 1225 

D-ITM > 1.06 28.7801 13.2565 10.2431 10.2830 502 
Subtotal 1508 3440 1618 698 7264 

01-1993 D-OTM < 0.94 19.9471 18.1278 17.5940 17.2031 2016 
12-1993 OTM 0.94-0.97 15.1137 15.9530 15.9032 15.8790 1363 

ATM 0.97-1.03 13.0527 15.0049 15.2531 15.2373 3771 
ITM 1.03-1.06 16.5483 13.7655 13.5494 15.0131 922 

D-ITM > 1.06 24.3320 15.2997 12.7240 13.1883 119 
Subtotal 1616 3759 1905 911 8191 

01-1994 D-OTM < 0.94 22.3575 22.3177 21.7894 20.7475 1064 
12-1994 OTM 0.94-0.97 18.8928 20.6777 20.7616 20.5873 997 

ATM 0.97-1.03 17.0133 20.3906 20.8153 20.1593 3696 
ITM 1.03-1.06 20.8699 18.9154 19.3491 20.3946 1167 

D-ITM > 1.06 30.5593 20.7801 19.3984 17.7853 694 
Subtotal 1908 3757 1507 446 7618 

01-1995 D-OTM < 0.94 18.4048 17.0587 16.7857 17.2068 934 
12-1995 OTM 0.94-0.97 14.6966 15.5858 16.0529 16.7132 1186 

ATM 0.97-1.03 12.8115 15.3327 16.5042 16.7667 4016 
ITM 1.03-1.06 18.0937 14.7234 15.6158 17.3403 1140 

D-ITM > 1.06 26.9899 18.4912 16.6102 17.0525 480 
Subtotal 1750 3848 1502 656 7756 

01-1996 D-OTM < 0.94 19.2950 16.9383 17.4112 18.0205 2198 
12-1996 OTM 0.94-0.97 13.9735 14.6577 15.9545 16.9107 1643 

ATM 0.97-1.03 11.4319 13.7513 15.5459 16.5180 4506 
ITM 1.03-1.06 16.8674 16.6771 14.6736 17.0643 1006 

D-ITM > 1.06 19.2626 16.6865 16.3162 17.3346 424 
Subtotal 2137 4711 1847 1082 9777 

09-1991 D-OTM < 0.94 20.1433 18.2545 17.8301 17.5453 6726 
12-1996 OTM 0.94-0.97 15.5895 16.2446 16.4119 16.2535 6152 

ATM 0.97-1.03 13.2761 15.3978 16.1745 16.0988 20049 
ITM 1.03-1.06 17.8608 14.3785 14.6507 15.6822 5460 

D-ITM > 1.06 28.1228 17.5942 15.2581 16.0717 2219 
Subtotal 8919 19515 8379 3793 40606 
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The performance of jump-diffusion and N-GARCH pricing options 
models 

In this section, we examine each model's out-of-sample cross-sectional pricing 
performance. For this purpose, we rely on the time series of the index levels and 
use them as input to compute current day's parameters of the considered proces-
ses. Next, we subtract the model-determined price from its observed counterpart, 
to compute both the absolute pricing error and the percentage pricing error. This 
procedure is repeated for every call and each day in the sample period from 01 
January, 1997 through 30 April, 1997. Table 4 and 5 report the pricing results for 
the jump-diffusion model pricing option and N-GARCH model pricing option 
respectively, where for clarity the standard errors for each estimate are omitted 
as they are generally very small and close to zero. 36 groups of results under the 
proposed moneyness and maturity classifications are presented to reflect diffe-
rences in the models' price calculations. For a given model, we compute the price 
of each option using the previous day's parameters. The average of market price 
(AP), the average of the absolute pricing errors (AE), the average of the absolute 
percentage pricing errors (APE) and the average of the percentage of pricing 
errors (PE) are reported in the tables. The absolute pricing error is the sample 
average of the model price minus the market price, divided by the market price. 
The absolute percentage pricing error is the sample average of the absolute pe-
rentage of pricing errors. The percentage pricing error is the sample average of 
the percentage of pricing errors. 

According to the three above measures, first, the jump-diffusion model gene-
rally does better than the N-GARCH model, except that for a few categories the 
N-GARCH performs slightly better than the frist one. As was shown, the jump- 
diffusion model outperforms the N-GARCH model in pricing the deep-out-of-
the-money, out-of-the-money and slightly at-the-money options, regardless of 
maturity. For example, take a deep-out-of the-money call with moneyness less 
than 0.94 and with 60-90 days to expiration. From tables 4 and 5, the average price 
for such a call is DM 10.09. When the N-GARCH model is applied to value this 
call, the resulting absolute pricing error is, on average, DM 6.02 as shown in table 
5, but when the jump-diffusion model is applied, the average error goes down to 
DM 2.32. As another example, for slightly at-the-money calls with short-term-to-
expiration (30-60 days), their average price is DM 33.48, the N-GARCH model 
gives an average pricing error of DM 6.04, and the jump-diffusion model results 
in an average error of DM 3.50. However, the N-GARCH model performs slightly 
better in pricing at-the-money, in-the-money and some cases of deep in-the-mo-
ney options. Regardless of maturity, incorporating N-GARCH model produces by 
far the most imporant improvement over the jump-diffusion model, reducing the 
absolute percentage errors typically by 4 percent to 6 percent. Second, observe 
that two models produce negative percentage pricing errors for in-the-money 
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options with short-term and medium-term of maturity, subject to their time-to-
expiration not exceeding 180 days. This means that both models tend to under-
price in-the-money options with short term and medium term of maturity while 
they overprice out-of-the-money options. From the results it can be shown that 
in-the-money options with very long term of maturity are better valued with the 
N-GARCH model. Third, generally for a given moneyness category and regar-
dless of the pricing model, the absolute and the absolute percentage pricing er-
rors typically increase from short- to medium- to long-term options. But for 
a given term of maturity, both models price in-the-money more accurately than 
out-of-the-money options. And the longer the term of maturity, the more accura-
te are the model-determined option prices. 

Table 4. Out-of-sample pricing errors from a jump-diffusion option pricing model 

Days-to-maturity 
Moneyness o/R) 

6-30 30-60 60-90 90-180 180-270 > 270 

< 0.94 AP 1.25 4.92 10.09 22.22 45.07 89.82 
AE 0.53 1.24 2.32 5.12 12.02 10.46 

APE 66.39% 36.62% 36.72% 21.99% 25.29% 29.46% 
PE 1.67% 9.51% 14.81% 5.44% 19.18% 21.16% 

0.94 - 0.97 AP 3.72 12.94 24.87 47.24 80.72 152.81 
AE 2.02 3.78 5.24 2.71 10.33 55.4 

APE 56.69% 31.75% 22.04% 14.47% 15.79% 29.13% 
PE 35.91% 19.35% 11.86% 0.21% 13.38% 16.93% 

0.97-1.00 AP 14.03 33.48 50.23 76.27 111.71 201.98 
AE 3.28 6.50 7.17 17.98 35.19 71.52 

APE 57.44% 18.88% 16.58% 16.08% 15.34% 26.27% 
PE 27.07% 0.43% 4.23% 11.13% 2.30% 9.35% 

1.00 -1.03 AP 49.67 68.97 85.11 112.08 146.23 261.25 
AE -6.92 -10.77 -14.65 -23.81 62.10 55.06 

APE 17.22% 13.61% 13.66% 15.27% 16.78% 22.94% 
PE -3.26% -7.62% -9.39% -12.40% 0.21% 6.43% 

1.03-1.06 AP 104.87 116.31 129.43 156.55 189.79 312.19 
AE -18.55 -16.24 -19.63 -25.98 62.68 49.12 

APE 11.51% 9.86% 11.57% 12.11% 12.77% 20.48% 
AE -10.03% -7.96% -8.16% -9.38% (7.09%) -14.39% 
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> 1.06 AP 256.05 239.94 257.55 262.44 273.28 442.83 
AE -26.10 -32.13 -35.26 -45.49 79.44 127.21 

APE 7.64% 9.43% 9.65% 9.51% 9.91% 16.78% 
AE -6.82% -8.57% -9.17% -10.15% -17.81% (14.09%) 

Table 5. Out-of-sample pricing errors from N-GARCH (1,1) option pricing model 

Days-to-maturity 
ivioneyness 

6-30 30-60 60-90 90-180 180-270 > 270 

< 0.94 AP 1.25 4.92 10.09 22.22 45.07 89.82 
AE 1.05 2.86 6.02 17.56 27.71 45.06 

APE 93.73% 67.23% 75.97% 60.90% 51.66% 56.37% 
PE 56.93% 63.23% 75.97% 60.89% 51.66% 56.37% 

0.94 - 0.97 AP 3.72 12.94 24.87 47.24 80.72 152.81 
AE 2.69 7.01 11.20 20.24 20.27 35.92 

APE 81.66% 55.75% 47.94% 36.68% 25.12% 21.44% 
PE 47.11% 54.35% 47.54% 36.21% 24.06% 20.44% 

0.97-1.00 AP 14.03 33.48 50.23 76.27 111.71 201.98 
AE 5.80 6.04 8.77 13.16 25.61 53.85 

APE 76.66% 26.71% 22.20% 17.50% 17.54% 22.20% 
PE 46.43% 18.71% 15.20% 12.98% 16.10% 22.20% 

1.00 -1.03 AP 49.67 68.97 85.11 112.08 146.23 262.25 
AE 0.52 5.40 11.57 20.35 28.71 54.27 

APE 18.93% 13.90% 14.52% 15.10% 15.53% 19.10% 
PE 7.01% 8.07% 11.52% 13.98% 14.57% 19.06% 

1.03 -1.06 AP 104.87 116.31 129.43 156.65 189.79 312.19 
AE -10.92 0.67 6.67 18.30 27.58 49.01 

APE 9.24% 9.10% 7.08% 11.33% 13.11% 16.51% 
PE -5.16% -5.62% -1.82% 9.89% 12.60% 16.36% 

> 1.06 AP 256.05 239.94 257.55 262.44 273.28 442.83 
AE -19.04 -14.02 -6.30 3.51 16.44 35.69 

APE 5.65% 4.82% 4.25% 4.83% 6.47% 9.04% 
PE -4.65% -3.23% -0.61% 2.51% 5.47% 8.80% 
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S u m m a r y and Conclusions 

We have presented two alternative option pricing models that admit stocha-
stic volatility in discrete-time framework - the so-called N-GARCH model with 
the property of nonlinear general autoregressive conditional heteroskedasticity 
and random jumps. It is shown that this approximation of closed-form pricing 
formulas is practically implementable, and it has made it relatively straightfor-
ward to study the relative empirical performance of two models of distinct inte-
rest. The parameters needed to imply those models in pricing options were 
computed using the maximium likelihood method. 

The paper has shown that regardless of performance yardstick, the jump-dif-
fusion model and N-GARCH model are still significantly misspecified. According 
to the out-of-sample pricing measures, ading the random-jump feature to the ran-
dom walk model of asset return can further improve its performance, especially 
in pricing short-term options; whereas modeling stochastic volatility under a fa-
ily general GARCH process can enhance the fit of long-term options. 

Notes 
1 See Bollerslev, Chou, Kroner (1992) for a survey of this literature. 
2 Mathematically speaking, the market price for additional risk is associated with the Girsanov trans-

formation of the underlying probability measure leading to a particular martingale measure. 
3 See Merton (1973), p. 150. 
4 For more details about the Hamilton-Jacobi-Bellman equation we refer to Tomas Bjork (1998), Oksen-

dal (1985). 
5 The log utility function correnspondens to the case of g = 1. 
* Note that the relationships between the cumulants k. with i=l, 2, 3, 4 of a distribution and its 

moments, are given by 

= E[Z(t)] 

K2 =E[(Z(/))2J-(E[Z(0])2 

*3 = E[(Z(»))3 J - 3E[Z(O]E[(Z(O)2 ]+ 2(E[ZCO])3 

V4 = E[(Z(0)4 J - 3E[(Z(/))2 j - 4E[Z(D]E[(Z(0)2 ]+ 12(E[z(R)])2 E[(Z(D)2 J - 6(E[z(R)])4 

7 The model simplifies to the popular GARCH model of Bollerslev (1986) when this correlation is 
absent. 
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8 According to Duan (1995), the assumption bt + b2[\ + (l + q)2] < 1 should be hold, then the stocha-

stic process in (38) has the first order weak stationarity. The stationary expected value (or uncon-

ditional variance) of the process under consideration is equal to /JQ jl - /Jj - /5^ [l + ($ + x f ' j 

The initial variance v0 then could be set based on the unconditional variance of the process. 
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