
Alfred Mutanga

A SystemC cache simulator for a
multiprocessor shared memory
system
International Letters of Social and Humanistic Sciences 2, 75-87

2014



Available online at  www.ilshs.pl 

 

International Letters of Social and Humanistic Sciences 

 
2 (2014) 75-87                                                                                                                                  ISSN 2300-2697 

 
 

A SystemC cache simulator for a multiprocessor 
shared memory system 

 
 
 

Alfred Mutanga 

Institutional Planning and Quality Assurance, University of Venda, University Road,  
Thohoyandou, Limpopo Province, 0950, South Africa 

E-mail address: alfred.mutanga@univen.ac.za 
 
 
 
ABSTRACT 

In this research we built a SystemC Level-1 data cache system in a distributed shared memory 

architectural environment, with each processor having its own local cache. Using a set of Fast-Fourier 

Transform and Random trace files we evaluated the cache performance, based on the number of cache 

hits/misses, of the caches using snooping and directory-based cache coherence protocols. A series of 

experiments were carried out, with the results of the experiments showing that the directory-based 

MOESI cache coherency protocol has a performance edge over the snooping Valid-Invalid cache 

coherency protocol. 

 

Keywords: Cache Coherency; Cache Simulator; Multiprocessor Architectures 

 

 

 

1.  INTRODUCTION 

 

Architecturally, computing systems have their memory organized hierarchically and this 

memory nomenclature is scientifically termed the memory hierarchy (Hennessey and 

Patterson, 2007; Stalling, 2012). The nearer the memory module is to the processor, the 

smaller and faster are the components resulting in an inverse relationship between the size and 

speed of the memory module. However, according to Hennessey and Patterson (2007) fast 

memory comes with cost implications as these modules are relatively expensive per byte. 

Altogether the memory modules in a computer system collectively allow the data and 

instructions to flow through the system. The central processing‟s unit registers are the most 

vital as these store the operands and results of all computations capitalizing on the principle of 

locality (Hennessey and Patterson, 2007).  

 The computer program and data are typically stored on non-volatile storage such as 

disk drives and tapes before execution but these are first loaded into main memory, which is 

much faster, but still significantly slower than the registers (Hennessey and Patterson, 2007, 

p. 288-299). As an intermediate step in the memory hierarchy, caches were invented to avoid 

the penalties of memory access by keeping the most recently used data and delivery is much 

faster to the processor. Cache memories are therefore the conceptual foundation for this 

research. 

mailto:alfred.mutanga@univen.ac.za


International Letters of Social and Humanistic Sciences 2 (2014) 75-87                                                                                                                              

76 

2.  PROBLEM STATEMENT 
 

As has been observed through various computer architecture research the problems 

facing the multicore processor systems at large are that, processor speeds are “rising 

dramatically at approximately 75 % per year”, according to McKee (2004). The memory 

clock speeds at the same time are increasing steadily at a paltry 7 % per annum (Hennessey 

and Patterson, 2007). The research by NASA and scientists at the University of Virginia 

confirm this dilemma, that, there is a divergence in the operating speeds of memory 

architectures and processor systems, referred to as the Memory Wall (McKee, 2004). The 

challenge facing computer scientists and engineers today is therefore to design a memory 

architecture that operates at the same clock speeds as the processor architecture. 

The computing industry facing the dilemma of the memory wall resolved that to 

increase performance on computing systems should be as a result of building latency-

tolerance prefetching non-blocking cache memory systems (McKee, 2004).  

This resulted in the computing industry building processor architectures consisting of 

larger cache memory systems and more latency tolerance on chip. Memory architectures are 

organized hierarchically, with the memory components nearer to the processor being smaller 

and faster (Hennessey and Patterson, 2007). Cache memory systems are there to prevent the 

penalties of memory access by keeping the most recently or frequently used data and deliver it 

as fast as is possible to the processor. The memory wall results in memory being considered 

as the bottleneck for processor performance, and modern computer architectural designs 

feature different cache memory levels (Hennessey and Patterson, 2007). 

Caches exploit the benefits of temporal and spatial locality of the data in the computer‟s 

main memory by having regular access patterns. Typically each memory request goes through 

the cache memory and subsequently channelled to the main or a higher level cache memory if 

the requested data or instruction is not found in that cache.  

Complications arise when multiple processors with each having a local cache have a 

shared main memory system. If the various caches keep private copies of shared data while 

being unaware of what is the state of these copies in the other caches, undefined cache 

performance behaviour may arise. 

Cache coherency protocols are required to maintain the cache consistency of all the data 

stored in the different local caches (Leiserson and Mirmam, 2008). The cache coherency 

protocols consist of cache line state transitions that can be captured by cache simulators. 

However it is not easy to get the actual behaviour of these caches and also to prove the 

correctness of such cache behaviour. Despite their benefits, multiprocessors can only scale so 

far and bottlenecks can occur when several CPUs on a board share a single memory system 

and a bus (Hennessey and Patterson, 2007). 

In this research we evaluated the performance of Level 1 data cache memory systems in 

a multiprocessor environment by looking at the influence of the bus traffic, and cache 

coherence protocols, number of processors and cache associativity. We addressed the 

following research questions: 

1. To what extend do the number of processors in multiprocessor architectures affect the 

performance of Level 1 (L1) data cache memory systems? 

2. How do cache coherency protocols influence the Level1 data cache memory performances 

of multiprocessor architectures? 

 

 

 



International Letters of Social and Humanistic Sciences 2 (2014) 75-87                                                                                                                              

77 

3.  THEORETICAL FRAMEWORK 

 

The problems that have been identified for uniprocessors have been addressed by the 

development of multi-core architectures. The real world is parallel, and the reason why single 

processors have faced problems is that they have been executing instructions sequentially in 

short bursts of time. The real explanation why chip companies shift to multi-cores is prosaic 

in the sense that it includes several reasons that are not within the context of this research. 

There is an inherent concept that multi-cores increase the speeds of execution of multiple 

tasks, but achieving parallelism is not a trivial task (Nussbaum and Smith, 2002). What are 

the challenges or problems which multi-core designers face? Let us look into these problems 

briefly. 

 

3. 1. Programmability 

Historically parallel processing computer architectures and multi-cores have presented 

computer architecture designers and system software developers programming challenges. 

The programming challenges include intellectual programming skills needed to develop 

programs for such systems, and the need for specialised software tools to program them. The 

daunting task for programmers is on the “parallelisation of sequential programs” (Szydlowski, 

2005). The multi-core programming model should be based on standard programming tools 

and programming languages. There are no real standards in the programming landscape of 

multi-cores (Duller and Towner, 2003; Towner et al., 2004; Jourbet, 2008). Echoing the same 

sentiments about programming multi-cores (Leiserson and Mirmam, 2008) wrote that “multi-

core processors are parallel computers and parallel computers are notoriously difficult to 

program”. Chris Jesshope identified 3 different models of machine/programming models 

which are sequential; ad-hoc parallel and fully parallel models (Jesshope, 2008).  Even though 

these programming models exist there is need to address the issue of standards and 

automation of multi-core programming tasks (Blyler, 2009).  

 

3. 2. Scalability 

Multi-cores reduce system latency but one of the challenges that multi-core systems 

developers face is developing systems that are scalable. Multi-cores produce tangible benefits 

but making the processes parallel brings with it programming challenges as mentioned before. 

Increasing more processor cores on chip might entail that the whole system has to be rewritten 

(Blyler, 2009; picoChip, 2007). Rewriting code for more cores has a direct implication on 

production cost, longer marketing times and consumers end up paying for these shortfalls. In 

the event of increasing more processor cores the programmer has to rethink about the routines 

to use and repartitioning the processing operations between the individual processors added. 

 

3. 3. Communications 

Multi-cores present problems in the communication channels used by the processing 

elements to communicate between or to each other. PicoChip identified the “saturation of the 

communications links between processing elements” (Panesar et al., 2005, 2006; picoChip, 

2007) as a major drawback especially to multi-cores with more than 10 processors. Race 

conditions are also “pernicious bugs” (Leiserson and Mirmam, 2008) that are difficult to 

detect. There is always need to have a reliable and efficient way to eliminate race conditions. 

Designing the interconnection channels between the various processing elements is crucial in 

order to achieve higher performance gains. The data or instructional dependencies may cause 



International Letters of Social and Humanistic Sciences 2 (2014) 75-87                                                                                                                              

78 

some of the processors to be idle hence loosing performance gains. The width of the 

communication channel is an important factor to consider. There is a concern that power 

dissipation can increase with multiple processing elements operating concurrently.  

 

3. 4. Managing a heterogeneous architecture 

Multi-core systems are in most cases constituted by different types of processors and 

technically the architecture is referred to as a heterogeneous architectures. The heterogeneous 

architecture is not as easy to program as the homogeneous architecture that consist of similar 

processing elements. Homogenous architectures are easy to implement on silicon (picoChip, 

2007, Hobson et al., 2006). Heterogeneous architectures provide greater yields in execution 

speeds because they include dedicated processing elements for specific application tasks, 

some elements are designed to speed up code.  

 

3. 5. Cache Memory Systems 

As mentioned earlier processor speeds have been scaling up faster than memory speeds 

resulting in the memory wall. Computer engineers have seen that both processor and memory 

clock cycles have been decreasing overs time (processor by about 60 % per year, Moore‟s 

Law and the memory by about 7 % per year, Less‟ law) (Jesshope 2008; Hobson et al., 2006). 

There have been of course attempts to increase memory bandwidth by introducing 

concurrency in memory accesses through pipelining (Jesshope 2008; Hobson et al. 2006), but, 

this requires regular memory access patterns and random access to the main memory bringing 

with it degradation in memory performance (Chevance, 2006; Jesshope 2008). The memory 

hierarchy brings conflicting requirements in the memory systems as computing systems 

require a large and fast memory to scale up performances. 

A memory hierarchy attempts to make a large slow memory appear fast by buffering 

data in smaller faster memories close to the processor (Hennessey and Patterson, 2007). 

Electronic systems slow down as they increase in size, for example the speed of light is 

approximately 1ns for 30cms and 1ns is 3 clock cycles in a state of the art processor 

(Jesshope, 2008). Memory performance is therefore a compromise between power and 

performance, as is the processor performance today (Chevance, 2006; Hennessey and 

Patterson, 2007). The key indicators of memory performance are the memory bandwidth and 

latency (Hennessey and Patterson, 2007). Memory latency is the delay required to obtain a 

specific item of data (measured in seconds), and, this is larger in dynamic random access 

memory (DRAM) than in static random access memory (SRAM) (Hennessey and Patterson, 

2007). SRAM can access any bit each cycle DRAM is restricted to bits in the same row, cell 

address space (CAS) cycles. Memory Bandwidth is the rate at which data can be accessed 

(e.g. bits per second), Bandwidth is normally 1/cycle time, and this rate can be improved by 

concurrent access (Hennessey and Patterson, 2007). 

The most common solution to the memory wall is to cache data and caching requires 

locality of access or memory reuse, which may be achieved by compiler optimisations that 

can help to localise data (Jesshope, 2008). Computing scientists also designed banked 

memory systems to provide high bandwidth to random memory locations (Hennessey and 

Patterson, 2007; Jesshope, 2008), but, some access patterns still break the memory (Jesshope, 

2008). Processors that tolerate high-latency memory accesses have been designed but this 

requires concurrency in instruction execution (Hennessey and Patterson, 2007; Jesshope, 

2008). Caches are largely transparent to the programmer, but, programmers must be aware of 

the cache while designing code to ensure regular access patterns (Hennessey and Patterson, 



International Letters of Social and Humanistic Sciences 2 (2014) 75-87                                                                                                                              

79 

2007; Jesshope, 2008, 2009, 2011). Caching the right data is the most critical aspect of 

caching to improve maximum system performances. More catch misses end up reducing 

performance instead of improving and this might end up consuming more memory and at the 

same time suffering from more cache misses lead to system deadlocks, where the data is not 

actually getting served from cache but is re-fetched from the original source. The 

development of a cache simulator requires a deeper understanding of how the memory 

hierarchy operates (Schintke, Simon, and Reinfield, 2012). 

 

 

4.  DESIGN AND IMPLEMENTATION 
 

This research study is based on a simulating a 32KB 8-way set-associative Level1 Data 

Cache. In this research study we have concentrated on the Shared Memory Architecture. The 

reason for choosing shared memory architecture is that we wanted to scale up the cache 

simulator, from having one processor to a maximum of eight processors using different trace 

files. We have to modify the architecture to make sure that each processor node has access to 

a local cache (reads and writes). The architectural implementation for this research implies 

that each processor node can write to a memory location, and its local cache stores the 

memory contents locally, consequently a read of the same memory location on another 

processor node can be of a different value from its cache. The modified shared memory 

architecture used in this research is not unique as Jesshope (2011), suggested such memory 

architecture for scaling up processor frequencies. Associativity of caches (Hill and Smith, 

1991) is an important metric that determine cache performance. 

The implementation environment based on SystemC (Black and Donovan, 2004; OSCI, 

2005; Bhasker, 2009; Ma, 2011) resulted in us simulating a 32KB Level 1 data cache within 

the Arch Linux environment. We developed SystemC/C++ code for the implementation of the 

CPU, Memory, Cache, Bus and used Jesshope‟s (2011) Trace Files used to drive the 

simulator. For our simulation we used the UNIX platform, Arch Linux 3.8 

(http://www.archlinux.org) with GNU C++ compiler versions gcc-4.8. It is one of the 

lightweight GNU/Linux based operating system. The installation of Arch Linux takes place as 

if you will be building your own operating system, as it is heavily command driven. The three 

main issues that one should take care of when installing Arch Linux is the graphics, network 

especially wireless networks and UEFI. We chose to install the KDE desktop environment for 

our Arch Linux environment because of having used it in another Linux ambience which is 

the Linux Mint environment. We followed the instructions in the INSTALL document that 

comes with the SystemC-2.2.0 package to compile it in Arch Linux. The SystemC installation 

is a nasty experience and it took us some days to compile it and run in Arch Linux. Jesshope 

(2011) provided the theoretical and programming foundations of the trace files used for this 

research, and we use his trace files version 3, and his philosophy behind these trace files to 

drive our simulator. 

The approach to implement the SystemC Level 1 Data-cache simulator followed the 

conventional programming norms of increasing the programming complexity as the demands 

of the system increases. We started by implementing a bus snooping cache coherence 

protocol, the Valid-Invalid protocol. The term „snooping‟ allows for each cache node in the 

system to monitor the activities on the bus to which each of the cache nodes can write 

exclusively. In the event of a write enquiry if a cache node realizes that another processor 

belonging to another cache node has written to an address which it has a copy, the cache line 

containing a stale copy of the associated memory segment is immediately invalidated. The 



International Letters of Social and Humanistic Sciences 2 (2014) 75-87                                                                                                                              

80 

programming logic behind this protocol is that it does not allow for two cache lines to be 

valid in different cache nodes, in the event that they are mapped into the same set and even 

share the same address tag. The implementation of this protocol served as the basis for 

diagnosing anticipated programming problems and we used the debugging traces to eliminate 

errors until we were satisfied with the program executions.  

We then implemented the MOESI Cache coherence protocol which is theoretically and 

programmatically built as an extension to the MESI protocol. The MESI protocol is the most 

common cache protocol that supports the write-back replacement strategy. The acronym 

MESI indicates that the protocol supports four cache line state transitions and these are 

Modified, Exclusive, Shared and Invalid, which logically implies that it implements the same 

cache line invalidation scheme as the valid-invalid cache coherency protocol. The difference 

to the valid-invalid cache coherency protocol is that it monitors whether the cache line is 

shared or not. The caches are allowed to make the cache line dirty if the cache line is in a 

modified or exclusive state. The MOESI cache coherence protocol introduces a fifth cache 

line transition state „owned‟ which means it has characteristics of exclusive modified and 

shared cache line state transitions. We have to point out that this cache coherency protocol 

allows for cache lines to be shared, and is not supposedly written back to memory before the 

sharing. 

As a starting point we build a single 32KB 8-way set associative cache with 32 Byte 

line size. We also built a CPU module connected to the cache that was asking for reading or 

writing some data from or to memory through the cache. In addition we made a memory 

module to help in checking the correctness of the data. The connection between the memory 

and the cache has been made from an 8-bit wire, therefore to fill the 32 Byte cache line, the 

cache has to read the memory 32 times. This was also useful to simulate the memory latency. 

We only used the random trace file for one processor to test the correctness of our simulator. 

The result of the simulation can be seen in the Table 1. 

 
Table 1. Results of simulating with a Uniprocessor. 

 

Property Value 

Execution Time 55329 ns 

CPU Read 6140 times 

CPU Write 6081 times 

Read Hit 5113 (83.3%) 

Read Miss 1027 (16.7%) 

Write Hit 5017 (82.5%) 

Write Miss 1064 (17.5%) 

 
 

The results in the show that the CPU made 12221 requests composed as 6140 read 

requests and 6081 write requests. The results further show that more than 80% of the requests 

hit the cache, with an execution time of 55329 ns. 
 



International Letters of Social and Humanistic Sciences 2 (2014) 75-87                                                                                                                              

81 

4. 1. Comparative Results Using Graphs  

We plotted graphs to make a fair comparison of the trace files used and also the 

snooping and directory based cache coherency protocols. We made a comparative analysis of 

the protocols considering that there is no bus snooping, no barrier synchronization and with 

barrier synchronisation for each protocol. We started by comparing the Average Cache hit 

Rate and the two graphs represented by Figure 1 and Figure 2 indicate that there is no major 

significant difference between the Valid-Invalid and MOESI cache coherence protocols in 

terms of the cache hit rates, when random trace files are used. The different configurations 

made to the simulator did not show distinguishable cache performance indicators between the 

two sets of traces. The MOESI protocol theoretically outperforms the Valid-Invalid protocol. 
 

 
 

Figure 1. Average Hit Rate Using Random Traces. 

 
 

 
 

Figure 2. Average Hit Rate Using Fast-Fourier Transform Traces. 

0

10

20

30

40

50

60

1 2 4 8

Si
m

u
la

ti
o

n
 T

im
e

 (
n

s)
 

Number of CPU Nodes 

VALID-INVALID rnd
no_sync

VALID-INVALID FFT sync

MOESI rnd no_sync

MOESI rnd sync

No Snooping

10

12

14

16

18

20

22

24

26

28

1 2 4 8

Si
m

u
la

ti
o

n
 T

im
e

 (
n

s)
 

Number of CPU Nodes 

VALID-INVALID FFT
no_sync

VALID-INVALID FFT sync

MOESI FFT no_sync

MOESI FFT sync

No Snooping



International Letters of Social and Humanistic Sciences 2 (2014) 75-87                                                                                                                              

82 

The other result that was very important to the SystemC cache Simulator experiment 

was to investigate the contention of the bus interconnection network. This was achieved by 

taking a count of the time stamps (delta cycles) in which the bus had more than one request to 

handle. This was handled by a member function in the Bus module which was designed to 

indicate the number of requests in the queue. The bus contention when using the two sets of 

traces is shown by Figure 3 and Figure 4. 
 

 
 

Figure 3. Average Bus Contention Using Fast-Fourier Transform Traces. 

 
 

 
 

Figure 4. Average Bus Contention Using Fast-Fourier Transform Traces. 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1 2 4 8

A
ve

ra
ge

 B
u

s 
C

o
n

te
n

ti
o

n
 (

P
e

rc
e

n
ta

ge
) 

Number of Cores 

MOESI rnd sync

MOESI rnd no_sync

VALID-INVALID rnd sync

VALID-INVALID rnd
no_sync

0

0,02

0,04

0,06

0,08

0,1

0,12

1 2 4 8

A
ve

ra
ge

 B
u

s 
C

o
n

te
n

ti
o

n
 (

P
e

rc
e

n
ta

ge
) 

Number of Processor Cores 

VALID-INVALID FFT no_sync

VALID-INVALID FFT sync

MOESI FFT no_sync

MOESI FFT sync



International Letters of Social and Humanistic Sciences 2 (2014) 75-87                                                                                                                              

83 

The synchronised cache simulator runs show a reduction in the bus contention. The 

synchronisation event relieves the interconnection network as it oblige the processor nodes to 

wait until the barrier threshold instead of putting them in a race condition towards the end of 

each trace. The MOESI cache coherence protocol exhibit a smaller footprint on the 

interconnection network (bus), due to the deferred writes, but consequently uses more 

memory resources. 

 
 

5.  CONCLUSIONS 

 

The SystemC cache simulator we have developed initially showed some feeble plugs, 

maybe because, of the fact that the trace files we have used in the simulation were designed to 

pick up read and write  addresses for (hits/misses), instead of showing how the data is moved 

around in the system. In that way we would actually have testified that the processors 

constituted in the system have actually performed the reads and writes of the data they were 

supposed to. We also noticed that even if the trace files provided for checking whether the 

processors read/write the data they are supposed to, there is no assurance that the cache 

simulator is correct. We introduced a component of non-determinism in the event that the 

different cache nodes attempted simultaneously to access the bus. 

The introduction of a memory latency of a century of cycles did not generally assume 

that a read issued just a few cycles after a write onto the same memory address, would harvest 

the correct data response. If the memory was responding to a read request within the memory 

cycle latency limit, a write request issued to the same memory address was not permissible, 

and the stale data value was not send back to the bus. The cache coherency protocols resolved 

such a situation by implementing two further cache coherency organizations, and these are the 

write-invalidate or the write-update. 

As Jesshope (2011) argued that write-invalidate need the management of dynamic 

requests and the logic to rearrange requests if needed. The write-update requires an extra 

hardware in the form of a buffer that will contain the addresses of the requests, and the 

associated data elements, forcing the main memory to behave the same as the cache. We 

implemented the write-invalidate scheme as it is conservative and compatible with our chosen 

cache coherency protocols. It further pruned away the existence of duplicate read requests by 

allowing for a small degree of performance optimizations. We studied the graphs and come to 

the conclusion that cache coherence protocols are comparable, even when we use different 

traces and different number of processors. We therefore use the experimental data and graphs 

to answer our research questions. 

 

Answering the Research Questions 

The first research question refers to an investigation of the performance of the cache 

when we increase the number of processors. Based on this postulate we then give our 

response to the following first research question entitled: 

To what extend do the number of processors in multiprocessor architectures affect the 

performance of Level-1 (L1) data cache memory systems? 

We have noted that the runs of all the cache simulator experiments we have made did 

not end up in an inconsistent state. The execution time (simulation time) of the cache 

simulator increases as we have more processor cores. The average hit rate did not increase 

significantly with the increase of the processor cores. We have also noted that other factors 

such as snooping have a direct effect on the performance of the cache. From the results of the 



International Letters of Social and Humanistic Sciences 2 (2014) 75-87                                                                                                                              

84 

simulations we could see that increasing the number of cores does not imply an increase in 

cache performance as there are coherency issues to be taken care of. The deactivation of the 

snooping on the interconnection network subsequently increased the average hit rate even 

when using different trace files. 

Without snooping on the bus, there is now invalidation in case of probe write hits, 

meaning that the cache writes to a shared cache line and the status of the cache line remains 

the same. In such an instance the cache gets a higher hit rate. As performance is determined 

by the hit rate we would argue that the cache performs much better without snooping. 

However when we deactivated bus snooping we could not guarantee and assure the integrity 

of the cache line when we repeatedly run the cache simulator. The other factor that comes into 

play when we increased the processor nodes is synchronisation of the caches and taking care 

of the cache misses. One way of taking care of this aspect is to optimize the compiler, by code 

rearrangement including data rearrangement. Loop interchange and cache blocking could also 

optimize the cache by improving temporal locality. We can conclude that increasing the 

number of processors on the multiprocessor architecture implies more cache programming 

complexity and cache coherency is a major concern in the performance of the caches of a 

multiprocessor system. 

Rightfully we can say that given optimizations in the compiler and having synchronised 

multibanked caches in the multiprocessor system, we can increase the cache performance. As 

mentioned earlier increasing processor nodes with their local caches mean that there is a lot of 

programming issues to consider. In our case we pipelined the cache access so that we would 

increase the cache bandwidth. We have mentioned earlier that cache coherency is an 

important aspect to consider in a multiprocessor environment. We therefore investigated how 

our chosen cache coherency protocols affected the performance of our cache simulator. The 

research question to answer is the folloing: 

How do cache coherency protocols influence the Level-1 (L1) data cache memory 

performances of multiprocessor architectures? 

We have used trace caches to reduce the hit time in our system henceforth improve the 

cache hit rate. Each implementation of our SystemC cache simulator had to run a set of 

Random and Fast-Fourier Transform trace files in 1, 2, 4, and 8 processor environments. The 

comparison graphs showed that the directory-based cache coherence protocol (MOESI) has a 

slight performance edge over the snooping cache coherence protocol (Valid-Invalid). Though 

the difference can be regarded as statistically insignificant, MOESI protocol outperforms 

Valid-Invalid protocol because it can transfer data from one cache to another cache. In such 

cases the cache miss doesn‟t always mean the cache has to read/write from/to memory. Lesser 

memory access reads leads to faster execution time because the need to wait for memory 

access latency can be reduced. The hit ratio of the MOESI protocol is better than the hit ratio 

in Valid-Invalid protocol meaning that consecutive writes will always contribute to a cache 

miss. In the MOESI protocol if a write miss occurs, the cache line will be updated (read) and 

the consecutive write will be marked as write hit. Another contributing factor to the better 

performance of the MOESI protocol is that it has a lower contention rate of the bus usage. 

One of the reasons for this could be that, the memory access rate in Valid-Invalid protocol is 

more than in the MOESI protocol. Since the bus will be used when the cache modules want to 

have memory access, higher memory access will imply a higher request to use the bus. 

Following the memory hierarchy principles, accessing the bulk shared memory will take more 

time compared to accessing another cache. The Valid-Invalid have to wait longer to access the 

memory than in MOESI protocol. 



International Letters of Social and Humanistic Sciences 2 (2014) 75-87                                                                                                                              

85 

Unexpectedly in some instances the MOESI cache coherence protocol used more 

memory writes which might be as a result of a bug in our SystemC cache Simulator. We have 

actually managed to preserve the coherency of the caches in all our experiments and all 

simulations. We still need to conduct a proof of the program correctness of our simulator 

using acceptable, scientific, standard proof-of-program correctness methodologies. All the 

simulations never ended up in an inconsistent state, which is a significant leap towards the 

optimization of the cache simulator. We therefore have the following recommendations for 

the improvements of the cache simulator. 

 

 

RECOMMENDATIONS 
 

The performance graphs showed that there is no significant performance difference 

between the snooping protocol and the directory-based protocols we have chosen. 

Theoretically this is wrong and one of the reasons is that there might be a programming error 

(a bug) in the bookkeeping of the memory writes through the traces used or in the cache 

simulator itself. We therefore recommend a program proof-of-correctness procedure to be 

carried out and also to revise the configurations of the trace files. The Valid-Invalid protocol 

outperformed the MOESI protocol when random trace files were used which is a point of 

concern. The caches cannot expect randomness as they are based on programming attributes 

and the coherency attribute is a result of programming efforts. We therefore recommend a 

revisit on the trace files and an increase in the range including the types of trace files to be 

used by the simulator. 

We have not taken into consideration issues of increasing the cache bandwidth. As a 

future area of research and improving the cache performance we have to consider various 

cache optimizations schemes and also record the data for the memory accesses. The 

implementation of various cache optimizations will bring an increase in program complexity 

of the cache simulator. Concurrency has been a major programming issue during the 

execution of the simulator. When we implemented the SystemC simulator we had Error (115), 

which did not allow us to start the simulator with two or more drivers. We have actually 

resolved this error by implementing SC_SIGNAL_WRITE_CHECK= “DISABLED” at the 

start of each simulation involving more than one processor but we recommend that we have to 

create an environment variable that allows for explicit parallelism to occur during the 

simulation. 

We also recommend the use of a wide range of cache coherency protocols rather than 

choosing only one type of each category. As SystemC can be implemented in the multi-

platform environment and the simulator exhibits the characteristics of the hardware being 

simulated, we will in the try the simulator in different multiprocessor environments. However 

this has been a learning curve for us and this research is useful in multiprocessor design. 

 

 

References 
 

[1]  Bartolini S., Giorgi R., Journal of Embedded Computing 2 (2003) 137-139. 

[2]  Bhasker J. (2009). The SystemC 
TM

 Primer. Allentown, Star Galaxy Publishers. 

[3]  Black C., D., Donovan J (2004). SystemC from the Ground Up, Boston, Kluwer 

       Publishers. 



International Letters of Social and Humanistic Sciences 2 (2014) 75-87                                                                                                                              

86 

[4]  Byler J. (2009). Software Programmers face Multicore Challenges, in Embedded Intel. 

       [Online]. Intel. Available: http://www.embeddedintel.com/from_intel.php?article=1050 

       [Accessed 11 March 2013 2013]. 

[5]  Chevance J. R. (2006). Servers Architectures: Multiple Processors, Clusters, Parallel 

       Systems, Web Servers, Storage Solutions, London, Elsevier. 

[6]  Duller A. P. G., Towner D. (2003). Parallel Processing - the picoChip way! . In: Broenik, 

       J., F And Hilderink, G. (ed.) Communicating Process Architectures. London: PicoChip. 

[7]  Hennessy L. J., Patterson A. D (2007). Computer Architecture. A Quantitative Approach,  

       San Francisco, Morgan Kaufmann. 

[8]  Hill D., Smith A. J., IEEE Transactions on Computers 40 (1991) 371-390. 

[9]  Hill D., Smith A. J., IEEE Transactions on Computers 38 (1991) 1612-1630. 

[10]  Hobson R., Cheung K. L., Ressi B.,Signal Processing with Teams of Embedded 

         Workhorse Processors. EURASIP Journal on Embedded Systems (2006) 16. 

[11]  Jesshope C. R. (2008). A model for the design and programming of multi-cores. In: 

         GRANDINETTI, L. (ed.) Advances in Parallel Computing, 16, High performance 

         Computing and Grids in Action London: IOS Press. 

[12]  Jesshope C. R (2009). Multiprocessor Memory Systems, Amsterdam Universiteit van 

         Amsterdam 

[13]  Jesshope C. R .(2011). A SystemC Tutorial. Amsterdam, Universiteit van Amsterdam 

[14]  Joubert G. R. (2008). "Parallel computing current and future issues of high end         

computing", Forschungszentrum, John von Neumann Institute for Computing Jülich  

[15]  Leiserson C. E, Mirman I. B. (2008). How to Survive the Survive Multicore Software  

         Revolution [or at Least Survive the Hype]. . In: CLICKARTS, I. (ed.). New York: Click 

         Arts Inc. 
 

[16]  Ma N., "Modelling and evaluation of multi-core multithreaded processor architectures     

         in SystemC", Proquest, (2011) 1109. 
 

[17]  Mckee A. S. (2004). Reflections on the Memory Wall. In: ACM, ed. Proceedings of the 

         1st conference on Computing frontiers (CF '04). 2004 New York. New York: ACM, 1-6. 

[18]  Nussbaum S., Smith J. E. (2002). Statistical Simulation of Symmetric Multiprocessor  

         Systems. In: IEEE, ed. In Proceedings of the 35th Annual Simulation Symposium (SS 

          '02) , 2002. Washington, DC, USA, 89. IEEE Computer Society, 89-97. 

[19]  OSCI. (2005). An Introduction to System Level Modelling in SystemC 2.0. Available: 

         www.es.ele.tue.nl/~heco/courses/EmbSystems/WhitePaper20.pdf  

         [Accessed 15 March 2013]. 

[20]  Panesar G. T. D., Duller A., Gray A., Robins W. (2005). Deterministic Parallel 

         Processing. In: BROENIK, J., F AND HILDERINK, G. (ed.) Microgrid workshop- 

         2005. London: IOS Press. 

[21]  Panesar G. T. D., Duller A., Gray A., Robins W., International Journal of Parallel 

         Programming 34(4) (2006) 323-341. 

 

 

http://juwel.fz-juelich.de:8080/dspace/bitstream/2128/2945/1/NIC218477.pdf
http://juwel.fz-juelich.de:8080/dspace/bitstream/2128/2945/1/NIC218477.pdf
http://www.es.ele.tue.nl/~heco/courses/EmbSystems/WhitePaper20.pdf


International Letters of Social and Humanistic Sciences 2 (2014) 75-87                                                                                                                              

87 

[22]  PICOCHIP. (2007). Technical White Paper: Practical, Programmable Multi-Core DSP. 

         Available:      

http://www.picochip.com/downloads/4eac6c97aa70840ad7f4d12aec82ebf1/Multicore_J

une_2007.pdf  [Accessed 13 March 2013]. 

[23]  Schintke F., Simon J., Reinfield A. (2012). A Cache Simulator for Shared Memory  

         Systems (unpublished paper) 

[24]  Stalling W. (2012) Computer Organization and Architecture London, Prentice Hall. 

[25]  Sutter H. 2005. The free lunch is over: A fundamental turn toward concurrency in  

         software. [Online]. New York. Available: 

http://www.gotw.ca/publications/concurrency-ddj.htm  [Accessed 13 March 2013 

2013]. 

[26]  Szydlowski C. (2005). Multithreaded Technology & Multicore Processors [Online]. 

         New York: Dr. Dobb's. Available:  

         http://www.drdobbs.com/multithreaded-technology-multicore.../18440607   

         [Accessed 13 March 2013 2013]. 

[27]  Towner D. P. G., Duller A., Gray A., Robins W. (2004). Debugging and Verification of 

         Parallel Systems - the picoChip way! In: BROENIK, J., F AND HILDERINK, G. (ed.) 

         Communicating Process Architectures London: IOS Press. 

 

 

 

 
( Received 04 October 2013; accepted 21 October 2013 ) 

 

http://www.picochip.com/downloads/4eac6c97aa70840ad7f4d12aec82ebf1/Multicore_June_2007.pdf
http://www.picochip.com/downloads/4eac6c97aa70840ad7f4d12aec82ebf1/Multicore_June_2007.pdf
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.drdobbs.com/multithreaded-technology-multicore.../18440607

