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1.	 Introduction

It is well known that trade on stock market can take place, when market par-
ticipants assign different values to equity. Relations on stock market become more 
complex, when there is a number of assets and a number of diverse traders. It is 
necessary to take into account not only heterogeneity of traders but also changing 
environment. A good understanding of trading volume is very important for both 
traders and researchers. Usually at least 3 reasons are cited for the importance of 
trading volume. The first one is that there is a contradiction between the homog-
enous trader assumption and positive trading volume. In this model it is assumed 
that trade without new information is possible. The only reason for trading is the 
motive to speculate. It is very common that volume data are reported together 
with financial data, especially with price data. In the literature it is not clear what 
kind of information is reflected in volume data. Some researchers express doubt 
about any link between prices, trading volume and volatility. The reason may be 
the fact that volume increase can be caused by different interpretations of the 
same information by investors, or even by identical interpretation by investors 
who nevertheless behave differently because of differing initial expectations.

A third reason is the impact of market imperfection on trading volume. In 
this context the effect of the institutional form of the market on trading volume 
may be not correctly understood. The widespread view is that trading volume 
on imperfect market is lower that in a perfect market. This view is confirmed by 
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results of empirical investigations. These results imply that new information does 
not always cause immediately clearing of the markets. The second explanation is 
that investors frequently make mistakes, which can be corrected in following sub-
periods. This increases trading activity in the whole period under consideration.

Since investors are heterogeneous in their interpretations of new information, 
prices may remain unchanged even though new information is revealed to the 
market. This will be the case if some investors interpret the news as good whereas 
others find it to be bad. Another situation in which relevant new information 
may leave stock prices unchanged can be when, although investors interpret the 
information identically, they start with diverse prior expectations. From this it 
follows that changes in stock prices reflect an aggregation or averaging of inves-
tors’ adapted beliefs.

On the other hand, stock prices may only change if there is positive trading 
volume. One important question arising from this is whether volume data are 
simply a descriptive parameter of the trading process, or whether they contain 
unique information that can be exploited for modelling stock returns or return 
volatilities. As with prices, trading volume and volume changes mainly reflect the 
available set of relevant information on the market. Unlike stock prices, however, 
a revision in investors’ expectations always leads to an increase in trading vol-
ume, which therefore reflects the sum of investors’ reactions to news. Because 
this process leads to higher trading volume, it preserves the differences between 
investors’ reactions to the arrival of new information, differences that may get lost 
in the averaging process that fixes prices. Studying the joint dynamics of stock 
prices and trading volume therefore improves our understanding of the dynamic 
properties of stock markets.

Trading volume is not examined in the literature as often as prices behaviour 
over time. Although there is no consistent theory of volume, there are some im-
portant contributions to this subject, which will be reviewed in next section.

The rest of this paper proceeds as follows. The main ideas in the context of 
important volume contribution are reviewed in the next section. The third section 
describes the basic properties of the distributions examined. A short description of 
the data and their statistical properties are given in the fourth and fifth sections, 
respectively. The sixth section summarizes the empirical results of distribution 
fitting and goodness-of-fit tests. A final section concludes the paper.

2.	P revious contributions to trading volume

While investigations of the distributions of stock return data started very early 
[23, 35], the first contributions to volume distribution appeared considerably later 
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[1]. Trading volume appears in the literature in at least three settings: its relation 
to the bid-ask spread, its relation to price changes, and its relation to information. 
Previous contributions uniformly indicate that volume is negatively related to the 
bid-ask spread. This finding is consistent with some theoretical models [17, 21].

Several theoretical models consider the relation of trading volume to price 
changes. T.W. Epps [20] formulated a model where the volume on transactions 
in which the price ticks up is greater than the volume on downticks.

T. Copeland [16] derived a model of the sequential arrival of information to 
investors. By mean of simulation he demonstrated that after new information, 
volume is positively related to price changes. Copeland’s theory suggests that 
where new information is disseminated sequentially, rather than simultaneously, 
to investors, there is a sequence of transitional price equilibria that are accompa-
nied by persisting high trading volume. One important implication of this model 
is the existence of positive contemporaneous as well as causal relations between 
price volatilities and trading activities.

The widely reported fat-tailed return distributions are mainly explained by 
the Clark hypothesis [14]. According to this hypothesis the distribution of prices 
and volume is jointly exposed to an unobservable directing process. Clark’s model 
was extended by T.W. Epps and M.L. Epps [22], G. Tauchen and M. Pitts [44] 
and T.G. Andersen [2]. The underlying hypothesis of Clark’s model is known in 
the literature as the mixture of distribution hypothesis (MDH). The MDH implies 
strong positive contemporaneous linkages, but no causal ones between volume and 
return volatility data, whereas return levels and volume data display no interac-
tions [30]. C.G. Lamoureux and W.D. Lastrapes [31] examined Clark’s hypothesis 
using the GARCH model extended by a volume variable. The authors by means of 
the time series of single U.S. stocks demonstrated that volume explains GARCH 
effect. T.W. Epps and M.L. Epps [22] have suggested that volume moves with 
measures of within-day price variability because the distribution of transaction 
price change is a function of volume. Andersen [2] uses in his contribution a ra-
tional expectation model, and assumes non-informational trading and common 
information arrivals. He demonstrates that this improves the empirical fit of the 
implemented moment restrictions. The dynamic version of his model reduces the 
estimated volatility persistence of U.S. stocks.

In a framework where stock prices are assumed to be noisy, some recent 
studies by L. Blume et al. [9] and M. Suominen [42] argue that trading volume 
conveys unique information to the market, which is not contained in prices. The 
former model assumes that informed traders reveal their private information to 
the market through trades, and that uninformed traders learn from volume data 
about the precision and dispersion of an informational signal. This model implies 
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that return volatility and trading volume exhibit time persistence even when in-
formation arrivals do not.

R. Gallant et al. [24] in their extensive study estimated joint conditional re-
turn-volume density for the U.S. market using time series over 57 years. To make 
the time series stationary they detrended return series and volume series as well. 
Moreover they apply seasonal adjustments of both time series. The contributors 
found a positive (but non-linear) dependence between return volatility and volume. 
This relation is almost constant for negative standardized volume data, and has a 
tendency to increase for positive standardized volume realizations. C.G. Lamoureux 
and W.D. Lastrapes [32], by means of the bivariate mixture model, find no support 
for the idea that volume data has explanatory power for volatility persistence.

In the light of the reviewed contributions, large volumes and large price 
changes (positive or negative) can be attributed to information flows (the se-
quential information arrival model), or to a common directing process that can 
be interpreted as the flow of information (MDH). The large cost of taking a short 
position gives an explanation for the observation that, in stock markets, the vol-
ume connected with a price increase usually exceeds that connected with an equal 
price decrease, since costly short sales restrict some investors to trading on the 
basis of new information.

A common conclusion from these models is that trading volume not only 
describes market behaviour but actually affects it since it directly enters into the 
decision process of market participants. In this sense a strong relationship (contem-
poraneous as well as causal) between volume and return volatility is suggested.

In addition to the theoretical approaches described above, some empirical 
studies have been performed which deal with volume-price relations on capital 
markets. The relationship between trading volume and price changes per se was 
investigated by C. Hiemstra and J.D. Jones [29], T.J. Brailsford [10] and B.S Lee 
and O.M. Rui [33], mainly using index data. The results of these studies differ in 
detail, but on the whole they deliver evidence to support a positive volume-price 
relationship. A few studies also use the returns and volume of individual stocks e.g. 
R.L. Antoniewicz [3] who finds that the returns of individual stocks on high-volume 
days are more sustainable than are returns on low-volume days. S.E. Stickel and 
R.E. Verrechia [43] find that when earnings announcements are accompanied by 
higher volume, returns are more sustainable over the following days. In the model 
of G.O. Orosel [39], high stock returns lead investors who do not participate in 
the stock market to increase their estimate of the profitability of stock market 
participation. Results by T. Odean and S. Gervais [37] imply that a positive market 
return should lead to greater volume. T. Chordia and B. Swaminathan [12] inves-
tigate the role of trading volume in the cross-autocorrelation patterns observed in 
stock returns. The authors observe that returns of stocks with high trading volume 
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precede returns of stocks with lower trading volume. This is seen to confirm the 
speed of adjustment hypothesis, which suggests that high volume stocks adjust 
quicker to new information than low volume stocks. T. Chordia et al. [13] report 
a negative cross-sectional relationship between expected stock returns and both 
the level and the changes of trading volume.

In a more recent contribution by M.D. McKenzie and R.W. Faff [36] the 
authors analyze the relations between trading volume and the autocorrelation 
properties of daily stock returns. They notice the significant impact of trading 
volume on time varying autocorrelations in stock returns. In this study the authors 
report that higher trading volume is mostly accompanied by a drop in return au-
tocorrelation. Recently, R. Connolly and C. Stivers [15] investigated the autocor-
relation properties of stock returns in relation to abnormal turnover on a weekly 
basis. They found momentum in stock returns in the case of contemporaneous, 
abnormally high trading volume, and averse in returns in the case of abnormally 
low trading volume.

The relation between stock return volatility and trading volume has been 
analyzed in a more recent contribution by H. Bessembinder and P.J. Seguin [7], 
W.A. Brock and B.D. LeBaron [11], S. Avouyi-Dovi and E. Jondeau [4], B.S. Lee 
and O.M. Rui [33], H. Gurgul et al. [27] and [28]. These contributors uniformly 
confirm a strong relationship (contemporaneous as well as dynamic) between 
return volatility and trading volume. However, the investigations conducted by 
A.F. Darrat et al. [18], based on intraday data from DJIA stocks, only provide 
evidence of significant lead/lag relations, but do not confirm a contemporaneous 
correlation between return volatility and trading volume.

C.G. Lamoureux and W.D. Lastrapes [31], mentioned above, were the first 
to apply stochastic time series models of conditional heteroscedasticity (GARCH-
type) to explore the contemporaneous relationship between volatility and volume 
data. The authors found that persistence in stock return variance vanishes for the 
most part when trading volume is included in the conditional variance equation. 
If trading volume is considered to be an appropriate measure for the flow of infor-
mation into the market, then this finding is consistent with the MDH. However, 
one has to realize that the observation by C.G. Lamoureux and W.D. Lastrapes 
[31] is mainly proof of the fact that trading volume and return volatility are driven 
by identical factors, leaving the question of the source of the joint process largely 
unresolved. This GARCH cum volume approach has been applied and extended 
in several subsequent studies, such as [26, 32, 2, 10, 38]. M. Glaser and M. Weber 
[25] find that investors who think that they have above average investment skills 
(but who do not have above average returns) trade significantly more.

An extensive study of stock return distribution for some stock markets is 
presented by A. Peiro [40] and E. Eberlein and U. Keller [19].
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This contribution investigates the statistical properties of trading volume, es-
pecially distribution fit. Unlike most other studies on this issue, we use individual 
stock data instead of index data. Empirical distributions of common stock returns 
and abnormal returns have been studied extensively. Analogous information on 
trading volume is very sparse. Specification of empirical distributions is important 
because they enable researchers to:
-	identify measures for which the distributions of abnormal trading volume 

approximate normality,
-	define the level of misstatements in achieved significance levels when per-

forming typical statistical tests based on the t-distribution in trading volume 
studies,

-	find out how statistical tests are affected by the length of the estimation pe-
riod, the length of prediction interval, clustering of events and the size of the 
firm.

In practice [34] there are some several measures of trading activities for 
individual stocks:

1)	number of trades per period,
2)	share volume Xj , t ,
3)	dollar volume Pj , t Xj , t ,
4)	relative dollar volume P X P Xj t j t j t j tj, , , ,∑ ,
5)	share turnover (turnover ratio) t j t j t j tX N, , ,= ,
6)	dollar turnover n tj t j t j t j t j t j tP X P N, , , , , ,= = .

One can see that the last two measures are equal. The most common measures 
used in empirical investigations are given by 2, 3 and 5. To measure aggregate 
trading activity similar measures can be defined. Although the definition of dollar 
turnover may seem redundant since it is equivalent to share turnover, it becomes 
more relevant in the portfolio case.

It is well known in the literature that return data and especially volume data 
exhibit clustering, autocorrelation (long memory), fat tails, leptokurtosis and are 
positively skewed; i.e. they are highly non-normal.

According to A. Timmermann and C.W.J. Granger [45] the most promising 
direction for investigations of stock market quality in the context of the efficient 
market hypothesis (EMH) is not just modelling the first conditional moment of 
returns or volume data, but an estimation of the full conditional distribution of 
returns or volume dependent on the given information in the last time period.

According to the authors, the EMH does not imply that all changes in this 
density are unpredictable. It does, however, require that certain functions of the 
probability distribution are not predictable. As a concrete example, there is now 
substantial evidence that volatility of asset returns varies over time in a way that 
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can be partially predicted. For this reason there has been considerable interest 
in improved volatility forecasting models in the context of option pricing. Does 
this violate market efficiency?

Clearly the answer is no unless a trading strategy could be designed that would 
use this information in the options market to identify under- and over-valued op-
tions. If options markets are efficient, option prices should incorporate the best 
volatility forecasts at all points in time. To the knowledge of A. Timmermann and 
C.W.J. Granger [45] no similar results exist yet for the full predictive density of 
asset returns and volume. However according to those authors it is likely that 
methods now being developed for predicting the conditional skew, kurtosis and 
higher order moments of asset returns will also find some use in tests of market 
efficiency. From this point of view a first, very important step towards developing 
such a theory is proper distribution fitting to returns and volume data.

While B. Ajinkya and P. Jain [1] found non-normality in raw volume index 
data, according to these authors the log-volume of index data converges to a normal 
distribution as the number of securities per portfolio increases. They suggest log-
volume as the most proper measure of trading activity also for individual stocks. 
Therefore, the main task of our paper is to perform a distribution fit to the return 
and log-volume data of companies listed in DJIA as well. We extract 23 companies 
and test the log-volume distribution of each of them in the whole period from Au-
gust 1997 to October 2004, and in two subperiods (August 1997−February2001; 
March 2001−October 2004).

In the next section we review briefly the properties of potential distributions 
and their suitability to fit empirical return and volume distribution

3.	 Distributions

In order to find the best fit several distributions are considered: scaled Student 
t distribution, exponential power distribution, logistic distribution, hyperbolic 
distribution, normal inverse Gaussian distribution and α-stable distribution. These 
distributions have been chosen because they are extensively used in the analysis 
of the unconditional distribution of stock returns.

Scaled Student t distribution has a density function:
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where Γ denotes the gamma function, μ is a location parameter, σ > 0 is a scale 
parameter, and ν > 0 is a shape parameter usually referred to as degrees of free-



150

Henryk Gurgul, Roland Mestel, Tomasz Wójtowicz

dom. A scaled Student t distribution is a generalisation of Student t distribution 
in the sense that if X follows a scaled Student t distribution, then μ and σ are 
the mean and standard deviation respectively, and (X−μ)/σ follows a Student t 
distribution with ν degrees of freedom. Scaled Student t distribution was pro-
posed in the analysis of stock returns by P.D. Praetz [41] and R. Blattberg and 
N. Gonedes [8].

The exponential power distribution has a density function:
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where μ, α > 0 and –1 < β ≤ 1 are location, dispersion and shape parameters, 
respectively. The latter can be seen as a measure of “non-normality” distribution. 
If β > 0, the distribution is leptokurtic and if β < 0, it is platykurtic. When β = 0 
distribution is equal to normal and when β tends to –1 the distribution converges 
to uniform distribution. If X follows an exponential distribution, then E X( ) = m  
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Logistic distribution has a density function
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where μ is mean and α > 0 is a scale parameter. If X follows a logistic distribution, 
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One possible parameterisation of the PDF of the hyperbolic distribution 
can be written in the form:
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where K1 is a modified Bessel function of the third kind with a parameter 1, μ is 
a location parameter, δ > 0 is a scale parameter and 0 ≤ |β| < α are shape pa-
rameters. α is responsible for the steepness, and β for skewness. The hyperbolic 
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distribution was introduced by Barndorff-Nielsen [5]. In [19] this distribution fits 
well to German return data.

The density of NIG (the Normal Inverse Gaussian) is given by:

f x
K x

x
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The interpretation of the parameters of the NIG is identical with those of 
the hyperbolic distribution. The NIG distribution is able to model symmetric and 
asymmetric distribution with possibly heavy tails. Its tails are often classified as 
“semi-heavy”. If α tends to zero, the NIG distribution converges to a heavy-tailed 
Cauchy distribution with location parameter μ and scale parameter δ. Normal 
inverse Gaussian distributions were introduced by Barndorff-Nielsen [6] as a 
subclass of generalised hyperbolic laws with parameter λ= –1/2.

The class of α-stable distributions introduced by Lévy (1924) has no closed 
formula of density for all but three values of the parameter α: α = 1/2 (Lévy dis-
tribution), α = 1 (Cauchy distribution) and α = 2 (Gaussian distribution). Hence, 
stable distributions are defined instead in terms of their characteristic functions. 
The most often used parametrisation of the characteristic function of an α-stable 
distribution is:
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where 0 < α ≤ 2 is an index of stability, –1 ≤ β ≤ 1 is a skewness parameter, γ > 
0 is a scale parameter and δ1 is a location parameter. As mentioned above, for α 
= 2, the distribution is Gaussian. While if 0 < α < 2, the distribution has a fatter 
tail than in the Gaussian. If X follows an α-stable distribution with α > 1, then 
E X( ) = d1.

A parameterisation of the characteristic function which is more useful in 
applications, is given by:
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The value of this representation is that characteristics (and densities) are 
jointly continuous in all four parameters. The parameters α, β and γ have the 
same meaning for the two parameterisations, while the location parameters are 
related by:

d d bg pa
1 0 2

= − tg ,

if  α ≠ 1
and

d d bg
p1 0
2= − ,

when α = 1. 

It is worth noting that unlike all the distributions described above, members 
of the class of α-stable distributions, except the Gaussian distribution, have 
infinite variance. From the empirical investigations of E. Eberlein and U. Keller 
[19] it follows that this kind of distribution applies to returns on the American 
stock market.

4.	 Data

Our data set (supplied by Reuters Austria and Deutsche Börse, controlled 
by us for mistakes and adjusted for dividends and stock splits) comprises the 
daily percentage rates of return and the natural logarithms of trading volume 
series for 23 companies listed in the DJIA in the whole period from August 1997 
to October 2004. For each company calculations exclusively concentrate on the 
period of its DJIA membership. Therefore it was possible to extract 23 companies 
over the whole above-mentioned period. Continuously compounded stock returns 
are calculated from daily stock prices at close, adjusted for dividend payouts and 
stock splits. In order to check the robustness of our results in respect to sample 
size, the whole period has been divided into two sub periods: from August 1997 
to February 2001 and from March 2001 to October 2004.

5.	 Descriptive statistics

We start our investigations with some basic descriptive analysis of the time 
series under study. As can be seen from Panel A of Table 1 the mean of daily 
percentage stock returns over the whole period ranges from −0.035% (HP) to 
+0.058% (WalMart) with a median of 0.016% (Procter & Gamble).
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Table 1
Aggregated summary statistics for stock market data of DIJA companies

Panel A: Daily percentage stock returns

Mean Std.dev. Skewness Kurtosis

Min −0.034549 1.6457 −3.8872 5.0711

1. Quartile −0.015194 2.0112 −0.36585 5.6813

Median 0.01629 2.2308 −0.12103 7.4464

3. Quartile 0.028528 2.4299 0.068617 10.591

Max 0.057856 3.119 0.2241 74.44

Panel B: Daily log-volume

Mean Std.dev. Skewness Kurtosis

Min 14.2 0.36 −0.28 3.56

1. Quartile 14.8 0.41 0.09 3.91

Median 15.4 0.44 0.25 4.18

3. Quartile 15.6 0.46 0.37 4.64

Max 16.5 0.63 0.77 6.26

The well-known fact of a “fat-tailed and highly-peaked” distribution of return 
series is mostly present in our data. The smallest kurtosis of stock returns is equal 
to 5.07 (Caterpillar) while the largest is 74.44 (Procter & Gamble). Furthermore, a 
negative median of skewness (−0.12 for McDonald’s) means that majority of the 
examined stock returns are left-skewed.

Despite lower values of kurtosis, log-volume series as well as returns show 
fat tails. On the other hand, skewness of log-volume shows the opposite pattern 
–the majority of samples are right-skewed (lower quartile equals 0.09).

Observed values of skewness and kurtosis are the main reason for the non-
normal distribution of both returns and log-volume series. In fact, the Jarque-Bera 
test rejects normality in all cases except one (log-volume of AmEx from August 
1997 to February 2001).

6.	E mpirical results

The parameters of the considered distributions have been estimated by the 
maximum likelihood method.
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All necessary computations have been carried out in Matlab, however the 
parameters of α-stable distribution have been estimated following the method 
of Nolan (1997) in his program STABLE [46]. The results of these estimations 
are summarised in table 2, which contains the main descriptive statistics for all 
estimated distribution parameters (including cases where the distribution was 
rejected by goodness-of-fit tests). (Detailed results are not presented here because 
of the lack of space. They are available upon request).

With regard to the estimation of the parameters, some facts should be pointed 
out. The computed estimates of shape parameter β in the power exponential dis-
tribution are greater than zero. In the case of returns series they are, in fact, in 
the whole period greater than 0.5. This means highly leptokurtic distributions. In 
comparison to the return series, estimates of β for log-volume series are smaller 
but still positive. In the whole period they range from 0.14 to 0.57, which indicates 
semi-heavy tails.

A similar conclusion can be deduced from the estimated values of shape pa-
rameter α of hyperbolic and NIG distributions: for returns they are close to zero, 
whereas for log-volumes they are more distant. This once again confirms the fat-
tailednes of stock returns, and the semi-heavy tails of log-volume distributions. 
Moreover, estimated degrees of freedom in Student t distribution, ranging in the 
main period from 3.28 to 6.14, and from 5.44 to 16.3 for return and log-volume 
series respectively confirm nonnormality of examined data.

In order to clarify the properties of data series over time, we compare the 
values of estimated parameters in each of the subperiods. If we consider daily 
returns, visible differences between descriptive statistics can be observed for 
Student’s t, exponential and hyperbolic distribution. The values of degrees of 
freedom in Student t distribution are significantly greater in the first subperiod 
(August 1997−February 2001) than in the other considered period. Moreover, in 
the same period, shape parameter β in the power exponential distribution has its 
lowest values. On the other hand, hyperbolic distribution has significantly greater 
estimated values from March 2001 to October 2004.

If we take into account the interpretation and role of individual distribution 
parameters, it will be clear that all the differences mentioned above indicate that 
daily returns in the subperiod from August 1997 to February 2001 are closer to 
normality, than returns in the whole period or in the second subperiod. An analo-
gous conclusion can be drawn from estimated parameter values of log-volume 
distributions. The values of degrees of freedom in Student t distribution, and of 
β of power exponential distribution in the second subperiod in connection with 
higher values of α in NIG distribution in the first one suggest that the log-volume 
data are much more leptokurtic in the second subperiod from March 2001 to 
October 2004 than in the earlier one.
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Table 2
Aggregated summary statistics for estimated distributions parameters.

Panel A: Daily percentage stock returns
08.97−10.04

max

0.06
1.62
0.06
2.22
6.14
0.05
1.50
1.00
1.11

0.08
1.94
0.13
0.82
0.07
3.18
0.13
1.86
0.34
1.78
0.07

Panel B: Daily log-volume
08.97−10.04

max

16.5
0.35
16.5
0.55
16.3
16.5
0.46
0.57
6.34
1.84
1.22
16.3

mean

0.00
1.16

0.00
1.66
4.68

−0.01
1.10

0.70
0.76
0.02
1.14

−0.7
0.50
0.01
2.30

−0.06
1.77
0.10
1.31

−0.02

mean

15.3
0.24
15.3

0.38
8.73
15.3
0.32
0.34
5.04
0.63
0.59
15.2

me-
dian

0.00
1.18

0.00
1.66
4.57

0.00
1.08
0.69
0.76
0.02
1.22

−0.05
0.51
0.02
2.38

−0.06
1.76

0.09
1.32

−0.02

me-
dian

15.4
0.24
15.4
0.38
8.61
15.4

0.30
0.33
5.03
0.71
0.54
15.2

min

−0.07
0.89

−0.08
1.23
3.28

−0.11
0.64
0.47
0.50

−0.04
0.43

−0.41
0.30

−0.04
1.46

−0.38
1.63

−0.16
1.00

−0.14

min

14.2
0.20
14.2
0.31
5.44
14.2
0.25
0.14
3.43

−0.97
0.29
14.3

08.97−02.01

max

0.09
1.74

0.09
2.49

10.17
0.1

1.87
0.86
1.32
0.15
3.21
0.25
1.12
0.14
4.25
0.20
1.91

0.52
1.97

0.08

08.97−02.01

max

16.3
0.36
16.3
0.59
20.0
16.3
0.55
0.59
10.9
3.72
2.12
16.4

mean

0.01
1.29
0.01
1.93
6.22
0.00
1.44
0.52
0.79
0.04
2.02

−0.16
0.58
0.03
3.12

−0.14
1.83
0.14
1.49

−0.01

mean

15.2
0.25
15.2
0.39
10.1
15.2
0.34
0.30
5.65
1.12

0.70
15.0

me-
dian

0.00
1.30

0.00
1.89
6.00
0.00
1.49
0.49
0.72
0.03
1.95

−0.11
0.54
0.02
3.08

−0.09
1.85
0.11
1.47

0.00

me-
dian

15.3
0.24
15.3

0.38
9.35
15.3
0.34
0.28
5.31
1.04
0.59
15.0

min

−0.10
0.99

−0.10
1.55

4.06
−0.14

0.97
0.27
0.49

−0.05
1.09

−0.64
0.33

−0.04
2.26

−0.59
1.73

−0.15
1.19

−0.16

min

14.0
0.20
14.0
0.31
4.82
14.0
0.25
0.01
3.91

−1.01
0.30
13.4

03.01−10.04

max

0.06
1.49
0.06
1.99
7.39
0.07
1.53
1.00
1.26
0.09
2.31
0.24
0.92
0.09
3.47
0.21
1.87
0.35
1.61

0.09

03.01−10.04

max

16.6
0.26
16.6
0.43
12.8
16.6
0.38
0.84
6.71

2.08
0.83
16.4

mean

0.00
1.03

0.00
1.43
4.36

−0.01
0.91
0.76
0.85
0.00
0.85

−0.02
0.53
0.00
1.93

−0.02
1.73

0.05
1.14

−0.01

mean

15.4
0.21
15.4
0.32
6.77
15.4
0.25
0.46
5.23
0.97
0.38
15.2

me-
dian

−0.01
1.05

−0.01
1.43
4.02

−0.01
0.87
0.83
0.80
0.00
0.73

−0.02
0.49
0.00
1.81

−0.02
1.71

0.07
1.15

−0.01

me-
dian

15.4
0.21
15.4
0.32
6.00
15.4
0.25
0.48
5.24
0.93
0.36
15.2

min

−0.06
0.66

−0.07
0.92
2.78

−0.09
0.59
0.38
0.53

−0.11
0.00

−0.25
0.28

−0.09
1.23

−0.24
1.55

−0.29
0.73

−0.11

min

14.4
0.14
14.4
0.21
3.68
14.4
0.16
0.21
4.07
0.18
0.19
14.4

m
a
m
s
u
m
a
b
a
b
d
m
a
b
d
m
a
b
g
d

m
a
m
s
u
m
a
b
a
b
d
m

logistic

Student’s t

exponen-
tial

hyperbo-
lic

NIG

a-stable

logistic

Student’s t

exponen-
tial

hyperbo-
lic
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The adequacy of the estimated distribution is examined with Kolmogo-
rov–Smirnov (KS) and chi-square goodness-of-fit tests. These tests were chosen 
because they are commonly used in distribution fitting and their critical values 
are known and tabulated. Values of the cumulative distribution functions, needed 
in testing procedures, are estimated via numerical integration. In order to com-
pute chi-square goodness-of-fit statistics, the real line has been partitioned into 
disjointed intervals of equal probability. The numbers of intervals were propor-
tional to the sample length and were equal to 38 for whole period, and 28 for sub 
periods. In both tests a 5% significance level was considered. The detailed results 
of goodness-of-fit tests are not presented here.

However, some remarks about them should be noted. All considered distribu-
tions were rejected by one of the goodness-of-fit tests in four return samples of 
returns (Alcoa and IBM in period 08.97−10.04, Honeywell and Johnson&Johnson 
in 08.97−02.01), and in the case of five samples of log-volume (Honeywell in 
period 08.97−10.04; Honeywell and HP in 08.97−02.01; Citigroup and GE in 
03.01−10.04).

For the majority of samples, more than one distribution is fitted. In such a 
situation a criterion for choosing the best distribution is needed. As is well known, 
the Kolmogorov−Smirnov statistic is equal to the greatest distance between the 
empirical and the theoretical cumulative distribution functions.

Thus, it could be said that the distribution that has the smallest value of KS 
statistics describes the sample in the best way. This can be true only in the central 
part of the sample. But if the tails are of interest, the Anderson−Darling statistic 
should be considered instead of the Kolmogorov−Smirnov, because it better de-
scribes behaviour of the distribution on tails. Hence the Anderson−Darling statistic 
should be also taken into account in describing the best fit.

Table 3 reports the best fits based on Kolmogorov−Smirnov and Ander
son−Darling statistics respectively. Dashes indicate rejection of all examined 
distributions.

5.82
1.88
1.34
16.3
1.99
1.00
0.44
16.4

4.19
0.62
0.76
15.2
1.88
0.36
0.29
15.3

4.24
0.69
0.71
15.2
1.87
0.44
0.29
15.4

2.52
−0.95

0.53
14.3
1.84

−0.82
0.23
14.2

10.7
4.25
2.21
16.4
2.00
1.00
0.42
16.3

4.90
1.11

0.88
15.0
1.86
0.50
0.29
15.1

4.60
0.97
0.76
15.0
1.86
0.61
0.28
15.2

2.82
−1.03

0.52
13.3
1.68

−0.93
0.23
14.0

5.29
2.00
1.00
16.4
2.00
0.86
0.32
16.5

4.08
0.92
0.55
15.2
1.85
0.33
0.25
15.4

3.98
0.88
0.53
15.2
1.86
0.54
0.25
15.4

2.79
0.17
0.31
14.4
1.62

−1.00
0.16
14.4

a
b
d
m
a
b
g
d

NIG

a-stable

Table 2 cont.
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For the majority of return and log-volume samples, the hyperbolic or NIG 
distribution have the smallest values of both the KS and AD statistics. It should 
be noted that in majority of samples the values of Kolmogorov−Smirnov sta-
tistics for hyperbolic and NIG distribution were very close. The same is true of 
Anderson−Darling statistics. If we take this into account, it turns out that NIG 
and hyperbolic distributions describe the log-volume and stock returns in the 
best way, in the case of stock returns, this is in accordance with mentioned results 
from the literature.

Table 3
The best fits based on Kolmogorov−Smirnov and Anderson−Darling statistics.

Panel A: Daily percentage stock returns

KS statistic AD statistic

08.97–
−10.04

08.97–
−02.01

03.01–
−10.04

08.97–
−10.04

08.97–
−02.01

03.01–
−10.04

Alcoa − NIG Student’s t − hyperbolic NIG

Altria stable hyperbolic Student’s t stable hyperbolic Student’s t

AmEx hyperbolic Student’s t hyperbolic hyperbolic hyperbolic NIG

Boeing Student’s t hyperbolic stable Student’s t stable Student’s t

Caterpillar hyperbolic hyperbolic NIG hyperbolic hyperbolic NIG

Citigroup Student’s t stable stable Student’s t stable Student’s t

CocaCola hyperbolic hyperbolic NIG NIG stable NIG

Disney Student’s t hyperbolic Student’s t Student’s t stable Student’s t

DuPont hyperbolic hyperbolic hyperbolic hyperbolic hyperbolic hyperbolic

Exxon hyperbolic stable stable Student’s t stable stable

GE Student’s t stable NIG NIG stable NIG

GM NIG hyperbolic NIG NIG stable NIG

Honeywell NIG − NIG Student’s t − Student’s t

HP NIG Student’s t Student’s t Student’s t Student’s t Student’s t

IBM − stable NIG − stable NIG
Johnson & 
Johnson hyperbolic − hyperbolic hyperbolic − hyperbolic

JPMorgan 
chase

exponen-
tial hyperbolic exponen-

tial hyperbolic hyperbolic exponen-
tial

McDo-
nald’s NIG NIG hyperbolic NIG NIG Student’s t

3M NIG hyperbolic Student’s t NIG NIG stable

Merck Student’s t stable Student’s t Student’s t stable Student’s t
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Procter & 
Gamble Student’s t stable Student’s t Student’s t stable Student’s t

UnitTech hyperbolic logistic hyperbolic hyperbolic exponen-
tial Student’s t

WalMart NIG Student’s t NIG NIG NIG stable

Panel B: Daily log-volume

KS statistic AD statistic

08.97–
−10.04

08.97–
−02.01

03.01–
−10.04

08.97–
−10.04

08.97–
−02.01

03.01–
−10.04

Alcoa NIG NIG NIG hyperbolic hyperbolic NIG
Altria hyperbolic hyperbolic NIG hyperbolic hyperbolic NIG
AmEx hyperbolic hyperbolic hyperbolic hyperbolic hyperbolic stable
Boeing hyperbolic NIG hyperbolic NIG NIG hyperbolic
Caterpillar hyperbolic Student’s t stable hyperbolic NIG stable
Citigroup hyperbolic NIG − hyperbolic NIG −
CocaCola hyperbolic hyperbolic hyperbolic hyperbolic hyperbolic hyperbolic
Disney stable hyperbolic NIG stable hyperbolic NIG

DuPont hyperbolic hyperbolic exponen-
tial hyperbolic hyperbolic hyperbolic

Exxon hyperbolic hyperbolic stable hyperbolic hyperbolic stable
GE hyperbolic hyperbolic − hyperbolic hyperbolic −
GM hyperbolic hyperbolic hyperbolic hyperbolic stable hyperbolic
Honeywell − − stable − − stable
HP hyperbolic − NIG hyperbolic − NIG
IBM NIG NIG hyperbolic NIG NIG hyperbolic
Johnson & 
Johnson NIG NIG hyperbolic NIG hyperbolic hyperbolic

JPMorgan 
chase stable hyperbolic hyperbolic hyperbolic hyperbolic hyperbolic

McDo-
nald’s hyperbolic hyperbolic stable stable hyperbolic stable

3M hyperbolic NIG hyperbolic NIG hyperbolic hyperbolic
Merck stable stable stable NIG hyperbolic NIG
Procter & 
Gamble stable NIG NIG stable NIG hyperbolic

UnitTech Student’s t hyperbolic stable Student’s t NIG stable
WalMart NIG NIG hyperbolic hyperbolic hyperbolic hyperbolic

Table 3 cont.
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7.	C onclusions

While distributions of stock returns on an index and company basis are well 
documented in the literature, there are only a few contributions that relate to 
volume distribution fit. Although there is up to now no general theory of trad-
ing activity, especially with respect to returns and volatility, the most frequently 
used volume proxy is the logarithm of the number of shares traded (log-volume). 
Therefore this proxy of trading activity was the subject of our investigations. We 
performed our computations using the relatively short time series of volume, which 
were available to us after removing errors, stock split and dividend adjustments. 
For the sake of comparability we chose return data from the same time period.

In the light of our computations, in most cases the best fit to returns can be 
reached by normal inverse and hyperbolic distributions. This is in line with the 
results from the literature presented above. Volume data exhibit more autocor-
relation than return data, especially long memory property. Therefore, a normal 
distribution (except in the case of index data) does not fit volume data. Most dis-
tributions that fit pretty well to return data fit much worse to volume data. How-
ever it follows from our investigations that those distributions which fit relatively 
well to return data are also likely to fit to the log-volume data of the considered 
companies, although the quality of fit is in the latter case worse.

Literature

	 [1]	 Ajinkya B., Jain P. 1998: The behavior of daily stock market trading volume, 
Journal of Accounting and Economics 11, pp. 331–359.

	 [2]	 Andersen T.G. 1996: Return volatility and trading volume: An informa-
tion flow interpretation of stochastic volatility, Journal of Finance 51, pp. 
169–204.

	 [3]	 Antoniewicz R.L. 1993: Relative Volume and Subsequent Stock Price Move-
ments, working paper, Governors of the Federal Reserve System.

	 [4]	 Avouyi-Dovi S., Jondeau E. 2000: International transmission and volume 
effects in G5 stock market returns and volatility, BIS Conference Papers No. 
8, pp. 159–174.

	 [5]	 Barndorff-Nielsen O. 1977: Exponentially decreasing distributions for the 
logarithm of particle size, Proceedings of the Royal Society of London A353, 
pp. 401–419.

	 [6]	 Barndorff-Nielsen O. 1995: Normal inverse Gaussian processes and the 
modeling of stock returns, Research Report # 300, Aarhus University.

	 [7]	 Bessembinder H., Seguin P.J. 1993: Price volatility, trading volume and 
market depth: evidence from futures markets, Journal of Financial and 
Quantitative Analysis 28, pp. 21–39.



160

Henryk Gurgul, Roland Mestel, Tomasz Wójtowicz

	 [8]	 Blattberg R., Gonedes N. 1974: A Comparison of the Stable and Student 
Distributions as Statistical Models for Stock Prices, Journal of Business 47, 
pp. 244–280.

	 [9]	 Blume L., Easley D., O’Hara M. 1994: Market statistics and technical ana-
lysis: The role of volume, Journal of Finance 49, pp. 153–181.

[10]	 Brailsford T.J. 1996: The empirical relationship between trading volume, 
returns and volatility, Accounting and Finance 35, pp. 89–111.

	[11]	 Brock W.A., LeBaron B.D. 1996: A dynamic structural model for stock return 
volatility and trading volume, The Review of Economics and Statistics 78, 
pp. 94–110.

	[12]	 Chordia T., Swaminathan B. 2000: Trading volume and cross-autocorre-
lations in stock returns, Journal of Finance 55, pp. 913–935.

	[13]	 Chordia T., Subrahmanyam A., Anshuman V.R. 2001: Trading activity and 
expected stock returns, Journal of Financial Economics 59, pp. 3–32.

	[14]	 Clark P.K. 1973: A subordinated stochastic process model with finite variance 
for speculative prices, Econometrica 41, pp. 135–155.

	[15]	 Connolly R., Stivers C. 2003: Momentum and reversals in equity-index re-
turns during periods of abnormal turnover and return dispersion, Journal 
of Finance 58, pp. 1521–1555.

	[16]	 Copeland T. 1976: A model of asset trading under the assumption of seque-
ntial information arrival, Journal of Finance 31, pp. 135–155.

	[17]	 Copeland T., Galai D. 1983: Information effects on the bid-ask spread, Jou-
rnal of Finance 31, pp. 1457–69.

	[18]	 Darrat A.F., Rahman S., Zhong M. 2003: Intraday trading volume and re-
turn volatility of the DJIA stocks: A note, Journal of Banking and Finance 
27, pp. 2035–2043.

	[19]	 Eberlein E., Keller U. 1995: Hyperbolic distributions in finance, Bernoulli 
1, pp. 281–299.

[20]	Epps T.W. 1975: Security price changes and transaction volumes: theory 
and evidence, American Economic Review 65, pp. 586–597.

	[21]	 Epps T.W 1976: The demand for brokers’ services: the relation between 
security trading volume and transaction cost, Bell Journal of Economics, 
pp. 163–194.

[22]	 Epps T.W., Epps M.L. 1976: The stochastic dependence of security price 
changes and transaction volumes: Implications for the mixture-of-distri-
bution hypothesis, Econometrica 44, pp. 305–321.

[23]	 Fama E.F. 1965: The behaviour of stock market prices, Journal of Business 
38, pp. 34–105.

[24]	 Gallant R., Rossi P., Tauchen G. 1992: Stock Prices and Volume, Review of 
Financial Studies, pp. 199–242.



161

Distribution of Volume on the American Stock Market

[25]	 Glaser M., Weber M. 2004: Which past returns affect trading volume?, 
Working Paper, University of Mannheim.

[26]	 Glosten L.R., Jagannathan R., Runkle D.E. 1993: On the relation between 
the expected value and the volatility of the nominal excess return on stocks, 
Journal of Finance 48, pp. 1779–1801.

[27]	 Gurgul H., Majdosz P., Mestel R. 2004: Trading volume and stock prices 
on the Austrian stock market, Proceedings of the 22nd International Confe-
rence “Mathematical Methods in Economics”, Czech Society for Operations 
Research, Czech Econometric Society, Masaryk University Brno, Faculty of 
Economics and Administration, pp. 195–200.

[28]	 Gurgul H., Mestel R., Schleicher C. 2003: Stock market reactions to divi-
dend announcements: empirical evidence from the Austrian stock market, 
Financial Markets and Portfolio Management, vol. 17, No 3, pp. 332–350

[29]	 Hiemstra C., Jones J.D. 1994: Testing for linear and nonlinear Granger 
causality in the stock price - volume relation, Journal of Finance 49, pp. 
1639–1664.

[30]	Karpoff J.M. 1987: The relation between price changes and trading volume: 
A survey, Journal of Financial and Quantitative Analysis 22, pp. 109–126.

	[31]	 Lamoureux C.G., Lastrapes W.D. 1990: Heteroscedasticity in stock return 
data: Volume versus GARCH effects, Journal of Finance 45, pp. 221–229.

[32]	 Lamoureux C.G., Lastrapes W.D. 1994: Endogenous trading volume and 
momentum in stock-return volatility, Journal of Business and Economic 
Statistics 12, pp. 253–260.

[33]	 Lee B.S., Rui O.M. 2002: The dynamic relationship between stock returns 
and trading volume: Domestic and cross-country evidence, Journal of 
Banking and Finance 26, pp. 51–78.

[34]	 Lo A.W., Wang J. 2000: Trading volume: Definitions, data analysis, and 
implications of portfolio theory, Review of Financial Studies 13, pp. 257–
300.

[35]	 Mandelbrot B. 1963: The variation of certain speculative prices, Journal of 
Business 36, pp. 394–419.

[36]	 McKenzie M.D., Faff R.W. 2003: The determinants of conditional auto-
correlation in stock returns, Journal of Financial Research 26, 2003, pp. 
259–274.

[37]	 Odean T., Gervais S. 2001: Learning to be overconfident, Review of Financial 
Studies 14, pp.1–27.

[38]	 Omran M.F., McKenzie, E. 2000: Heteroscedasticity in stock returns data 
revisited: Volume versus GARCH effects, Applied Financial Economics 10, 
pp. 553–560.

[39]	 Orosel G.O. 1998: Participation costs, trend chasing and volatility of stock 
prices, Review of Financial Studies 11, pp. 521–557.



162

Henryk Gurgul, Roland Mestel, Tomasz Wójtowicz

[40]	Peiro A. 1994: International evidence on the distribution of stock returns, 
Applied Financial Economics 4, pp. 431–439.

	[41]	 Praetz P.D. 1972: The distribution of share price changes, Journal of Business 
45, pp. 49–55.

[42]	 Suominen M. 2001: Trading volume and information revelation in stock 
markets, Journal of Financial and Quantitative Analysis 36, pp. 545–565.

[43]	 Stickel S.E., Verrechia R.E. 1994: Evidence that Volume Sustains Price 
Changes, Financial Analyst Journal (November-December), pp. 57–67.

[44]	 Tauchen G., Pitts M. 1983: The price variability-volume relationship on 
speculative markets, Econometrica 51, pp. 485–505.

[45]	 Timmermann A., Granger C.W.J. 2004: Efficient Market Hypothesis and 
Forecasting, International Journal of Forecasting, Elsevier, vol. 20 (1), pp. 
15–27.

[46]	 www.cas.american.edu/~jpnolan



163

Distribution of Volume on the American Stock Market

Appendix

List of companies included in the sample

Company Name ISIN code

Alcoa Alcoa Inc. US0138171014

Altria Altria Group Inc. US02209S1033

AmEx American Express Co. US0258161092

Boeing Boeing Co. US0970231058

Caterpillar Caterpillar Inc. US1491231015

Citigroup Citigroup Inc. US1729671016

CocaCola Coca-Cola Co. US1912161007

Disney Walt Disney Co. US2546871060

DuPont E.I. DuPont de Nemours & Co. US2635341090

Exxon Exxon Mobil Corp. US30231G1022

GE General Electric Co. US3696041033

GM General Motors Corp. US3704421052

Honeywell Honeywell International Inc. US4385161066

HP Hewlett-Packard Co. US4282361033

IBM International Business Machines Corp. US4592001014

Johnson&Johnson Johnson & Johnson US4781601046

JPMorganChase JPMorgan Chase & Co. US46625H1005

McDonald’s McDonald’s Corp. US5801351017

3M 3M Co. US88579Y1010

Merck Merck & Co. Inc. US5893311077

Pro&Gamble Procter & Gamble Co. US7427181091

UnitTech United Technologies Corp. US9130171096

WalMart Wal-Mart Stores Inc. US9311421039


