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1. INTRODUCTION

According to E. K ant tim e and space are two ’’form s” of 
perception. The background of their m eaning is m ainly in ­
tuitional \  In physics time is — in principle — a coordinate: 
in  non-relativistic physics, this coordinate m ay vary  indepen­
dently of the spatial coordinates, w hereas in a relativistic ca­
se the time coordinate is coupled w ith  its spatial counterparts. 
This situation holds equally for classic and quantum  theories. 
In  a stationary state of a system  described by the non-rela­
tivistic quantum  mechanics, tim e enters only the phase factor 
of the wave function which has no influence on the calculated 
averaged quantities corresponding to the observed data. In 
effect, in a stationary  state no change in tim e of the observed 
quantities m ay occur.

Intuitionally, in classical and quantum  mechanics (as well 
as in special relativistic theory) we assume the tim e coordina­
te  m ay vary  from  a m inus infinity  called ’’the past” to a plus 
infin ity  called ’’the fu tu re ”. A time scale of this kind we call 
linear; see Fig. 1. The purpose of this paper is to indicate that 
a tim e scale which is different than linear m ay be — at least 
m some cases — of a better use. In our considerations we 
disregard fully the relativistic theory: we neglect the coupling 
betw een tim e and other (spatial) coordinates into one space- 
-tim e m etrics as well as the problem  of time in tervals and

1 W. S. Fowler, The D eve lopm en t of Scientif ic Method, Pergam on  
Press, Oxford 1962.



their m easurem ents. The time coordinate is assum ed (sim ilarly 
to L e ibn iz2) solely to be a param eter which allows us to 
distinguish betw een ’’earlie r” and „la ter”.

The problem  of tim e topology has its rich bibliography \  
In  this paper we try  to approach this problem  on the basis 
of an analysis of simple physical systems, both classical and 
quantum . For the classical case we lim it ourselves to periodic 
systems. According to T hirring 4 an alm ost periodic tim e evo­
lution is a general property  of small systems, whereas for 
large system s this evolution exhibits a chaotic behaviour con­
nected to a mixing of the observables. For the quantum  case 
we examine the tim e evolution of a system subm itted to the 
action of a small external field called perturbation  and deno­
ted by V; we consider only a system  having non-degenerate 
quantum -m echanical states, so the system  energies correspond­
ing to different states are different. Beyond the perturbation  
V, we assume the system  is a fu lly  isolated object.

We form ulate the problem  of tim e topology for a quantum - 
-mechanical : system  as follows: In a very distant past, the 
system  was in a unperturbed  stationary state (P) in which :— 
in the absence of V — it could rem ain infinitely. A t some 
m om ent the system  was pertu rbed  by V, and in a very  distant 
fu tu re  -it will be found in another stationary  state (F); we

2 G: W. Leibniz, Confessio Philosophi. Ein, Dialog, Klosterinarm, 
Frankfurt a/M., 1967.

3 H, Reichenba.ch, The Philosophy of Space and Time,  D over P ubli­
cations, N ew  York 1958; J. J. C, Sm art (ed.), P roblem s of S p ic e  and  
Tim e,  M acM illan, London 1964; T. Gold (ed.), The N ature  o f  Time, 
Cornell U niversity Press, Ithaca 1967; H. Reichenbach, The Direction  
of'-'Time, U niversity of California Press, B erkeley 1971; A.. Griinfoaum, 
Philosophical P roblem s of Space and Time, 2nd ed., A.  R iedel,. D or­
drecht 1973; J. R.. Lucas, A  Treatise  on T im e and Space, M ethuen, L on­
don 1973; L. Sklar, Space, T im e and Space-tim e,  U niversity  of C ali­
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T h e Natural Philosophy of T im e,  Clarendon Press, Oxford 1980; 
D. H. M ellor, Real Time,  U niversity  Pess, Cam bridge 1981; R. S w in ­
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assum e P  φ  F. The question we put here is w hat is the kind 
of tim e path  which is followed by the system  on its way 
from  P  to F. Before we approach the problem  of a time path 
for a quantum -m echanical case we exam ine — in Section 2—4. 
— the tim e topology for classical periodic systems.

2. THE OBSERVER; HIS BIRTH, LIFE AND DEATH

As a first step, let us point out tha t a time toplogy can be 
a subjective notion depending both on the properties of the 
exam ined system  as well as the perception ability of the 
exam iner (an observer). We define the observer as a being 
who can do (and register) m easurem ents. For example, we may 
imagine an observer w ho can register solely the coordinate- 
X of the position of a body in a Cartesian coordinate system. 
Another observer can register, say, the x and y coordinates 
of this system; the th ird  observer can m easure all three kinds 
of coordinates: x, y and z. Beyond these coordinates we may 
have observers who can m easure — for exam ple — one, o r 
more, velocity components of the body; other observers can 
register o ther body properties, for exam ple its mass. Finally, 
we m ay imagine an observer whose perception and m easuring 
ability  is infinite. We call Him an E xternal Observer.

Any observer who is able to accept only a finite set of 
observations of a system  is an observer connected — in  some 
w ay — w ith tha t sytem. He differs from  another observer 
whose perception ability, i.e. the (finite) set of measuremnts, 
which can be done by him  on the system  and registered, is 
different. It is easy to note tha t the perception ability  of an 
observer depends on the system  properties, in particu lar the 
system  complexity. For example, for a system  which is 
a starigh t line identical w ith the x axis, there is no problem  
of how to m easure the space coordinates other than  x; simi­
larly  in order to m easure a position in the system  which is 
a plane there is no problem  of how to m easure more than  two 
kinds of independent coordinates, say x and y. Let us assum e 
that beyond observables d ifferent than time any observer can 
also m easure time. This means that he is able to distinguish 
betw een an earlier and a later event; an event for an obser­
ver means — as a ru le — a m easurem ent. The tim e m easu­
rem ents enable him  to establish the sequence of events. The 
set of all m easurem ents in instants t ; enclosed w ith in  an 
in terval of tim e done in sequence by an observer we call the 
life in terval of this observer. The earliest of the observations



done by the observer (corresponding to the sm allest tj) we 
call his b irth ; the latest observation (corresponding to the 
largest t;) we call his death. We assume the num ber of obser­
vations in the set of m easurem ents representing the life of an 
observer is finite, although no lim it can be imposed a priori 
on it.

The instants of tim e t; m easured by an observer during his 
life can be represented on the tim e scale given in Fig. 1. These 
instan ts fill·the in terval BD; see Fig. la.

3. TWO KINDS OF THE SCALE OF TIME

Let a simple (linear) harm onic oscillator oscillate along the 
X axis. W ith the oscillator an observer is connected who can 
m easure the values of the x coordinate; any m easurem ent of 
X is accompanied by a corresponding m easurem ent of t. The 
oscillator moves, say, first in the direction of positive x, nex t 
it goes to negative x. We assum e the observer s tarts  his m ea­
surem ents im m ediately after the oscillator moves across the 
point x =  0. This m eans the life of the observer s ta rts  a t 
certain  position

χΒ =  ε δ;0 (1)
for which t =  t B. N ext x increases until the positive value 
close to the am plitude of the oscillator is attained; then  
x begins to decrease, becoming in some instant, a negative 
num ber. A t the same time the sequence of the m easured 
instants tj is an increasing set of num bers. A fter the sm allest 
x is a tta ined  the value of x increases. The largest of the 
increasing but negative x is some

XD =  - s '  ^  o. (2)
The next m easured value of x is

Xd + 1 = s £ 0  ( 3 )
so

XD+1 == Xb (4 )
because we assume that the ry thm  of the oscillator as well 
as th a t of the m easurem ents of χ rem ains unchanged in  the 
course of the oscillations. This situation repeats infinitely  in 
accordance w ith the definition of the oscillator as a perfectly  
periodic system. An im portan t feature  of a perfect periodic 
system  is tha t we have no physical param eter which allows



us to distinguish betw een one oscillaltion period and another. 
If we assume that there exists a one-to-one correspondence 
between the m easurem ents of x and those of t, the full perio­
dicity of the sytem  implies the same periodic property  for 
the tim e variable. In effect, the tim e scale for the oscillator 
should be not linear bu t form s a closed line leading to the 
equality

Id-;] — tB (5)
sim ilar to (4). This property  is represented in  Fig. lb. Topolo­
gically the scale is equivalent to a circle; see Fig. 2. The life 
between the b irth  (tB) and the death (tD) of the observer con­
nected w ith the oscillator will repeat infinitely  and nothing 
in  the system  allows for him  to detect the repetitions. These 
repetitions can be discovered only by another observer whose 
ability to do m easurem ents is larger tha t tha t of the observer 
connected w ith the oscillator. Me call such an observer an ex te r­
nal observer (not capitalized). In order to discover the repeti­
tions of the life of the observer connected w ith the oscillator, 
the external observer should have the possibility of counting 
the oscillations. An example of such an external observer is 
given in the next section.

4. SIMPLE EXAM PLES OF A N  EXTERNAL OBSERVER

Let us consider earth  Z which circles about sun S along an 
ellipse. An observer is connected w ith  the system. We call 
him  an in ternal observer (i.o.) and assume the observer can 
m easure only the distance r  betw een S and Z and can reg ister 
the instants of tim e t corresponding to d ifferent r. Let us 
assume the m easuring ability (perception) of the observer 
begins to work a t the smallest possible r  — rmin. The firs t 
m easurem ent r B gives the sm allest value of the increasing 
r, w hereas the last m easurem ent, r D, gives the sm allest value 
of the decreasing r. The set of m easurem ents repeats infinitely  
w ithout the possibility of detection of this fact by the obser­
ver. Because of this periodicity, the perception of the obser­
ver goes to zero and begins to work again approxim ately in 
the same instant of time, viz. w hen the distance r D яь r B is 
attained. The tim e scale is very  m uch sim ilar to th a t obtained 
in Sec. 3 for the harm onic oscilator: it begings a t tB, the tim e 
w hen the distance r B was m easured, and ends a t tD, the tim e 
w hen the distance rD was attained. The to tality  of the m easu­
rem ents represents the life of i.o. and — since the system  is



fu lly  periodic — a circular Scale of tim e should be applied. 
The i.o. cannot detect tha t tD æ  t B.

Now let us introduce an external observer (e.o.) w ith respect 
to the in ternal one; the e.o. can m easure more kinds of pa­
ram eters than  i.o. We assume also tha t e.o. can read the 
m easurem ents of i.o. bu t not vice versa. For example, besides
the distance r  =  |S Z | the e.o. can m easure the angle of the
direction SZ in respect to certain constant direction SA which 
links sun S w ith some star A; see Fig. 3. If there  is no 
precession of the ellipse about the axis perpendicular to the 
ellipse plane and going through the point S, the angles

θ =  <£ASZ (8)
m easured in each course of Z about S w ill repeat exactly. 
Let us assume the perception of e.o. is switched on at the 
angle

Hm =  (<ïASZ)m (7)

which is the angle betw een SA and SZ in the case of

|sz| =  rmin. (8)
If ε" and ε"  are infinitesim ally small num bers, the firs t m ea­
surem ent gives certain

C ' ·θ* =  * .+ « "  (9)
and the last m easurem ent gives certain

aD. =  am+ 2K -e "', (10)
because the next m easurem ent of ϋ· is # B providing we assume 
the earth  m ovem ent and the ry thm  of the m easurem ents are 
fu lly  periodic. So the life of e.o., though richer than  the life 
of i.o. by the set of m easurem ents of â  bettw een $ B and i?D, 
has the tim e scale identical to tha t of i.o.

Now let us assume the ellipse perform s a slow precession 
in its  plane. The life of i.o. does not change, bu t e.o. m ay now 
see and label d ifferent lives of i.o. This is so because the 
angle -&m, therefore the whole set of the observed angles
betw een # B and ê D, is now different for any course of Z about
S. The distinction betw een two different courses allows e.o. 
to discover tha t the next course of Z about S begins im m edia­
tely after the end of the form er course. This m eans a property  
■of the system  (precession) accompanied by the corresponding



increase of the ability to do m easurem ents (angles i9), make 
the tim e scale of e.o. different than the time scale of i.o. We 
m ay assume, for example, tha t precession of the ellipse covers 
a full angle 2π exactly during v  courses of Z about S. Then 
e.o. will discover tha t his life is v  times longer than  the life 
of i.o. But qualitatively, the tim e scale of e.o. rem ains the 
same as tha t of i.o., which means th a t the scale of e.o. is also 
of a circular shaipe. This is so because afte r the precession 
covered a full angle 2π the set of the m easurem ents obtained 
by e.o. repeats exactly 5. The e.o. cannot discover this repeti­
tion by himself, bu t this can be done by another observer, 
le t us call him  e.e.o., and having a larger ability for doing 
m easurem ents than  e.o.; sim ultaneously, the change of a new 
physical param eter is necessary. For example, the system  Z, 
S and A is a p a rt  of a galaxy. We assum e the plane ZSA on 
which Z, S and A are placed, ro tates about the axis SA. We 
assum e e.e.o. is connected w ith the ro tating system  and — 
beyond r  and & ■— he can m easure the ro tation angle φ of the 
plane ZSA about SA. Then e.e.o. will discover tha t different 
full precessions of the ellipse end at d ifferent positions of the 
plane ZSA. So e.e.o. has his own tim e scale, larger than  th a t 
of e.o. The e.e.o. m ay count different full precessions and 
discover th a t the end of one life of e.o. is im m ediately followed 
by his — e.o. — nex t life.

We sum m arize this section by concluding tha t the time scale 
of an observer connected w ith a m echanical sytem  m ay depend 
both on his m easuring ability and the physical properties of 
the system. If the notion of the observer is dropped out, we 
m ay speak about a convenient time scale for a system. A set 
of m easurem ents can be perform ed on a system  and the time 
scale for any system  can be dependent on this set.

5. PERTURBATION OF A QUANTUM -M ECHANICAL SYSTEM  
AND TOPOLOGY OF TIME

In non-relativistic mechanics, both classic and quantum , 
a straight-linear tim e scale is usually assumed; Fig. 1. In 
preceding sections we considered some mechanical system s 
and gave argum ents for a different than linear, nam ely cir­
cular, scale of time; Fig. 2. In fact, the topology of the time 
scale is, to a large extent, a m atter of convenience. A well-

5 L. D. Landau, E. M. Lifszits, Mechanics, Vol. 1 of Course of T heore­
tical Physics, Nauka, M oscow 1973 (in Russian).



-know n problem  of sim ilar natu re  concerned spatial coordina­
tes and was given in astronom y: the planets m ovem ent can be 
described equally in the Ptolemaic, or geocentric, system  as 
well as in the Coperniean, or heliocentric, system, bu t the second 
system  is m ore convenient than the first. The purpose of the 
rem ainder of this paper is to exam ine the topology of the 
tim e scale for a non-relativistic quantum -m echanical system. 
To this purpose we choose the problem  of a pertu rbation  of 
a non-degenerate stationary  state  of a quantum -m echanical 
system.

If the system  is in its stationary state, no m easurem ent do­
ne for it can provide a distinction betw een a later and an 
earlier instan t of time, see Sec. 1. In  fact, for such a system 
the notion of tim e looses its sense. In reality  the stationary  
states on only a few quantum -m echanical system s are exactly 
known. To such system s belong, for example, a particle in 
the field of a constant potential, the harm onic oscillator, and 
the states of the non-relativistic hydrogen atom (athough in 
description of the last two cases some special functions are 
necessary). We often seek for states which differ only slightly 
from  the exactly  known states, for example states of the hydro­
gen atom  in the weak electric or m agnetic external field. The 
states which are  w ell-know n are  called unperturbed, whereas 
states obtained from  the action of a supplem entary field are 
called perturbed  states. Schrödinger gave a m athem atical pro­
cedure which leads from  unperturbed  to perturbed  s ta te s s. 
This is a complicated iterative process which represents the 
perturbed  energies and pertu rbed  wave functions as a combi­
nation of series based on the unperturbed  quantities. Iteration  
m eans tha t contributions of the nex t step (higher order) can 
be expressed successively by those obtained in a form er step 
(lower order). This m akes the whole calculation extrem ely 
complicated and in  practice lim ited to only a few steps, on 
condition tha t we assume th a t results calculated in these few 
steps adequately approxim ate the exact solutions.

A more system atic approach to the perturbation  m ethod 
can be done on the basis of field theory \  A lthough we look 
for a perturbed  stationary  state, the tim e param eter is in tro ­

8 L. I. Schiff, Quantum, Mechanics, 3rd  ed., M cGraw H ill, N ew  York 
1968.

7 S. Raim es, M any-elec tron  Theory,  N orth-H olland Publ. Comp,, 
A m sterdam  1972.



duced into the calculation. This iparameter is taken along 
the linear scale of time. Let us consider the state  of a system 
which has the lowest energy, so it is called the ground state. 
It is assumed that a t tim e t being very far in the past 
( t = —oo) the state was unperturbed  whereas now (t= 0 ) it 
is perturbed. There is an operator (the tim e-developm ent 
operator) which leads from  the situation at t = —oo to tha t 
a t t= 0 . The interaction operators are the perturbation  ope­
rators represented in the so-called in teraction picture and 
ordered w ith the help of the chronological operator. The 
sense of this last operator is tha t it arranges the sequence 
of the interaction operators from  the earlier to the later 
times. So, for example, the product HA (ti) H B (ta) of two in te r­
action operators does not change on condition ti >  U, but 
changes upon the action of the chronological operator into 
Hb (ta) HA (ti) if ta >  ti. The intervals of the in tegration per­
form ed over the tim e variables extend from  — oo to zero; 
therefore, they correspond to a half of the scale given in 
Fig. 1. The tim e-developm ent operator obtained in the above 
way can be averaged over the unperturbed  wave function of 
the ground state. The im aginary part of the tim e derivative 
of the logarithm  of this average represents exactly the cor­
rection to the energy of the unperturbed  state, so w hen added 
to this energy, the correction gives the energy of the p e r­
turbed  state. Such a treatm ent, although elegant, seems to 
m ake the perturbation  calculation still m ore laborious than 
the Schrödinger iterative procedure. Especially, the treatm ent 
does not give a clear insight into how different components 
term s (sum s),. entering the Schrödinger perturbation  series, 
can be obtained. This situation changes, however, when a cir­
cular scale of time — sim ilar to tha t given in Fig. 2 — is 
taken into account instead of the linear scale. This kind of 
perturbation  theory has been presented in  some detail else­
w here 8. In the next two sections we outline those of its 
features which seem to be im portant from  the point of view 
of the topology of time.

8 S. O lszewski, Tim e Scale and, i ts  Application in Perturbation  
Theory,  „Zeitschrift für N aturforschung” 46a (1991), 313— 320.



6. PERTURBATION ENERGY OBTAINED  
FROM A CIRCULAR SCALE OF TIME

The time evolution of a quantum -m echanical system  which 
goes on according to the circular scale of tim e can be re ­
presented by cycles of collisions of this system  done w ith 
some pertu rbation  potential V.

We assume that a system  which is originally in a station­
ary  state  n is transfered under the action of the firs t collision 
in  a cycle w ith the potential V into some other state  p. A fter 
a sufficiently long time, state p can be considered as station­
ary  sim ilarly to n. It is convenient to assume th a t in state n  
the system  is characterized by its own tim e variable t„, in 
state p the system  has its own tim e variable tD, etc. Con­
sequently, the collision w ith V changes tn into tp. A nother 
collision transfers the system  from  a stationary  state  p to 
a stationary  state q; then the tim e variable t„ is changed 
into t„. F u rth e r collisions w ith  V can transfer the system  to 
state  r, state s, etc.; accordingly, the tim e param eter will 
assume the tim e variables tr, ts, etc. The last collision in 
a cycle is necessarily tha t which transfers the system  back 
into state n. The nex t collision w ith V begins a new  cycle. 
The num ber of cycles is unlim ited and tends to infinity. An 
exam ple of a cycle composed of four collisions (three in te r­
m ediate collisions) is represented in Fig. 4.

Any collision gives its contribution to the energy change 
of the system. This change is proportional to the integral of 
the product of (a) the complex conjugate of the w ave func­
tion of the system  before collision, (b) the pertu rbation  po­
tential, (c) the wave function afte r collision. The integration 
is perform ed over the position-dependent, or spatial, as well 
as the tim e-dependent coordinates. Any collision defines the 
space and time variables over which the integration has to 
be done. In general, the resu lt of the succesive integrations, 
corresponding to succesive collisions, tends to zero. The ex­
ception is the situation when a cycle ends w ith  some col­
lision which transform s the system  back to its initial sta te  n. 
We say then tha t a cycle is closed and then we obtain a non- 
-zero contribution to energy known from  the Schrödinger 
pertu rbation  theory.

The integrals over space and tim e can be separated. The 
resu lt of the integration over tim e for a (closed) cycle of 
collisions we call a kinetic part, w hereas a sim ilar integral 
done over space variables in a cycle is called a static part.



In order to get different contributions to the Schrödinger 
perturbation  energy, the system  m ust be subm itted to dif­
ferent (closed) cycles of collisions which begin and end at 
state n. The num ber of collisions in a cycle corresponds w ith 
the order of. the Schrödinger perturbation  term . If the tim e 
evolution in the collision cycle is represented by a non- 
-branched path, then we obtain only one Schrödinger term  
for each pertu rbation  order. This is not a satisfactory state 
of affairs, since for any perturbation  order larger than  2 the 
num ber of the Schrödinger term s (sums) is larger than  unity; 
for a high perturbation  order this excess in the num ber of 
term s becomes very high. In order to get a correct num ber of 
the Schrödinger perturbation  terms, branched paths of the tim e 
evolution of a system  during its collision cycle should be as­
sumed. Graphically the non-branched tim e path  for a cycle 
can be represented by a single loop (circle), called a m ain 
loop, w hereas the branched tim e paths are composed of se­
veral loops, called side loops, which spring out of the tim e 
loop having the beginning-end state n. The branched tim e 
paths can be obtained w ith the aid of the elim ination p rin ­
ciple discussed in Sec. 7.

Let us note that in order to get a correct representation of 
Schrödinger’s resu lt for pertu rbation  energy, all collision 
cycles have to be different, either in their shape or in the 
indices which label the states m et in the collisions. A  re ­
petition of a cycle gives.no contribution to energy.

7. ELIMINATION PRINCIPLE FOR EQUAL TIMES

In quantum  mechanics of m any-electron system s we have 
a principle given by Pauli which m akes reference to sym ­
m etry  properties of the wave function of the system. If the 
wave function of a m any-electron system  is approxim ated 
by a combination of products of the one-electron wave func­
tions the Pauli principle becomes an exclusion principle 
which states tha t any one-electron wave function cannot be 
occupied by more than one electron. The exclusion principle 
is of a fundam ental im portance for describing physical and 
chemical properties of m atter. H istorically, the explanation 
of the periodic system  of elements, as well as the electric 
and therm al properties of metals, represented its first suc­
cess. The assum ption tha t electrons in a system  behave like 
identical particles was also a t the basis of the principle.

Although physically it  has a com pletely d ifferent sense,
9 — S tu d ia  P h ilo so p h iae  C h ris tian ae  n r  1



the form ulation of the elim ination principle in this paper has 
some sim ilarities to th a t of the Pauli principle. The elim ina­
tion principle concerns the tim e instan ts of collisions w ith V 
and states th a t the energy contribution given by any cycle 
in  which the system  has two or more sim ultaneous collisions 
w ith  V  should be subtracted  from  the perturbation  energy. 
A t the same time, we postulate th a t the static p a rt of two 
cycles having the same pa tte rn  of collisions w ith V are  
identical independently  of tha t w hether a cycle is represen t­
ed by a m ain loop, or a side loop of time.

In applying the elim ination principle, as well as the po­
stu late of identity  for the static parts, the beginning-end 
state n  is considered in a d ifferent w ay than the in term ediate 
states in a cycle. F irst, the own tim e of state  n can never 
be equal to the own tim e of an in term ediate state; second, 
the beginning-end state for any static part in a cycle re ­
presented by a side loop should be pu t equal to state n. This 
equality makes the beginning-end state for a static p a rt the 
same for all cycles.

The elim ination principle needs to launch a com binatorial 
analysis for any collision cycle. This analysis has, as its p u r­
pose, to select all cases for which the interm ediate collision 
tim es can be equal. Two or m ore equal collision tim es divide 
the original (main) loop of tim e into two or m ore loops. For. 
example, for a cycle which has th ree in term ediate collisions 
(represented by a loop on Fig. 4) we can have the following 
cases of equal times: the collision instan t 1 is sim ultaneous 
w ith collision instan t 2; collision in 1 is sim ultaneous w ith 
tha t in 3; collision 2 is sim ultaneous w ith 3; finally  we can have 
sim ultaneously all three in term ediate collisions (instants 1, 
2, 3). The colon on Fig. 5— 5c represents a symbol of equal 
times. An im portan t point is th a t any two times, w hen pu t 
equal on a given path, should give loops which m ay touch; 
bu t no crossing of the tim e path  is allowed. For example, 
a path  is not allowed on which sim ultaneous tim e are  select­
ed in  the w ay represented in Fig. 6. The allowed kind of 
selection of the time paths implies tha t the sequence of col­
lision tim es w ith  V should be preserved. If we pu t collision 
tim e 1 equal to tim e 3, then tim e 2 (which is in term ediate 
betw een 1 and 3) cannot be equal to tim e 4 w hich is later 
than  3.

The elim ination principle can lead to tim e paths composed 
of m any loops. For example, for a cycle of four in term ediate



collisions, w here a collision time 1 is pu t equal to collision 
tim e 4, we obtain a path  represented by two loops. However, 
the elim ination principle requires also to take into account 
the case of tim e 2 equal to tim e 3 on the path  given on the 
rig h t side of Fig. 7. This leads to the path  represented in 
Fig. 7a and a separate Schrödinger term  corresponding to it 
is attained,

A consequent application of the elim ination principle, to­
gether w ith the postulate of identity  of the static parts, gives 
a full set of term s of the Schrödinger perturbation  series for 
energy. The sign w ith  which the term s enter the series is 
also given by the elim ination principle. Two collision times 
assum ed equal on a given non-branched path  m eans that the 
resulted  term  has to be subtracted  from  the term  represen t­
ing the cycle having a non-branched path. For example, three 
collision times assumed equal together, can be considered as 
coming from  a path  of two equal collision times, so the resu lt 
for three equal collision tim es should be subtracted from, 
th a t obtained for two equal collision times, etc.

8. SURVEY

In this paper we exam ined a problem  of the topology of 
the tim e scale. As an alternative to an open, or linear, scale 
there are  presented  argum ents for a closed, or circular, scale 
of time.

As the firs t step, we pointed out th a t the tim e scale can 
be a subjective notion dependent on the physical properties 
of a given system  and the perception ability  of an observer 
connected w ith tha t system. In a fu lly  periodic classical sy­
stem, there is no param eter which allows for an observer to 
distinguish betw een one cycle of events (observations) and 
another cycle. In this case the circular scale tim e is na tu ra lly  
fitted  to the periodic properties of the system. The length 
of the scale m ay depend on: (i) the num ber and kind of para­
m eters characterizing the system, (ii) the perception ability 
of an  observer. In  the case of a langer scale boith (i) and (ii) 
are larger than in the case of a shorter scale. Only an obser­
ver lin a periodic system  having a larger scale can detect 
the periodicity of a system  having a shorter scale.

As a second step, in order to have an idea about the topo­
logy of the tim e scale for m icrophysical systems, this topo­
logy was exam ined for a non-degenerate quantum -m echanical 
system  pertu rbed  by a small potential. It is pointed out tha t
9·



the Schrödinger perturbation  energy of this system  can be 
obtained in a ra the r simple way on condition tha t a circular 
scale of tim e is assumed. Beginning w ith some unperturbed  
quantum  state, the system  is subm itted to a cycle of collis­
ions w ith the perturbation  potential; after the last collision 
in a cycle the system  re tu rn  to its beginnig state and a new 
cycle of collisions begins. An elim ination principle is taken 
into account in order to subtract the contributions given by 
the cycles in which two or more sim ultaneous collisions with 
the  potential occur. W ith the aid of this principle there exists 
a strict correspondence betw een the colllision cycles and the 
term s of the Schrödinger perturbation  series. On the other 
hand, the application of a linear scale of tim e to a non-dege­
nerate  ground state can reproduce Schrödinger’s theory  of 
pertu rbation  energy of a system  in a much more complicated 
way.

I dedicate this paper to the m em ory of my father, Paw el 
Olszewski, who stim ulated m y in terest in the problem  of 
time. I am grateful to Tadeusz Kwiatkowski for his assistance 
in checking the components of the pertu rbation  series and 
to Joseph A. Dziver for his collaboration in preparing the 
English version of the m anuscript.
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te ly  before the observation B.



Fig. 2. Circular scale of time.

Fig. 3. The m otion of Z along an ellipse about point S w hich  is in  
one of th e  ellip se foci. The dashed orbit represents precession of the 
ellip se about the ax is going across S and being perpendicular to the  
Figure plane.
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Fig. 4. A n exam ple of a cycle  o f collisions having three interm ediate  
collisions w ith  th e  perturbation potentia l V.
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Fig. 5—5c. C ycles o f three interm ediate collisions w ith  potential V 
in  case w hen sim ultaneous collisions occur.
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Fig. 6. A n  exam ple of a forbidden set of sim ultaneous collisions for 
a cycle of four interm ediate collisions.
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Fig. 7a
F ig. 7—7a. E xam ples o f allow ed sets of .simultaneous collisions for  
a cycle o f four interm ediate collisions.


