MUZEUM HISTORII POLSKI

Stanislaw Olszewski

Time Topology for Some Classical
and Quantum Non-Relativistic
Systems

Studia Philosophiae Christianae 28/1, 119-135

1992

Artykut zostat zdigitalizowany i opracowany do udostepnienia
w internecie przez Muzeum Historii Polski w ramach

prac podejmowanych na rzecz zapewnienia otwartego,
powszechnego i trwatego dostepu do polskiego dorobku
naukowego i kulturalnego. Artykut jest umieszczony w kolekcji
cyfrowej bazhum.muzhp.pl, gromadzacej zawartosc polskich
czasopism humanistycznych i spotecznych.

Tekst jest udostepniony do wykorzystania w ramach
dozwolonego uzytku.



l Studia Philosophiae Christianae
ATK
| 28(1992)1

STANISLAW OLSZEWSKI

TIME TOPOLOGY FOR SOME CLASSICAL
AND QUANTUM NON-RELATIVISTIC SYSTEMS

1. Introduction. 2. The observer; his birth, life and death. 3. Two kinds
of the scale of time. 4. Simple examples of an external observer.
5. Perturbation of a quantum-mechanical system and topology of time.
8. Perturbation energy obtained from a circular scale of time. 7. Eli-
mination principle for equal times. 8. Survey.

1. INTRODUCTION

According to E. Kant time and space are two "forms” of
perception. The background of their meaning is mainly in-
tuitional’. In physics time is — in principle — a coordinate:
in non-relativistic physics, this coordinate may vary indepen-
dently of the spatial coordinates, whereas in a relativistic ca-
se the time coordinate is coupled with its spatial counterparts.
This situation holds equally for classic and quantum theories.
In a stationary state of a system described by the non-rela-
tivistic quantum mechanics, time enters only the phase factor
of the wave function which has no influence on the calculated
averaged quantities corresponding to the observed data. In
effect, in a stationary state no change in time of the observed
quantities may occur.

Intuitionally, in classical and quantum mechanics (as well
as in special relativistic theory) we assume the time coordina-
te may vary from a minus infinity called ”the past” to a plus
infinity called ”the future”. A time scale of this kind we call
linear; see Fig. 1. The purpose of this paper is to indicate that
a time scale which is different than linear may be — at least
in some cases — of a better use. In our considerations we
disregard fully the relativistic theory: we neglect the coupling
between time and other (spatial) coordinates into one space-
-time metrics as well as the problem of time intervals and

1 W. S. Fowler, The Development of Scientific Method, . Pergamon'
Press, Oxford 1962 .
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their measurements. The time coordinate is assumed (similarly
to Leibniz?) solely to be a parameter which allows us to
distinguish between “earlier” and ,later”.

The problem of time topology has its rich bibliography *.
In this paper we try to approach this problem on the basis
of an analysis of simple physical systems, both classical and
quantum. For the classical case we limit ourselves to periodic
systems. According to Thirring * an almost periodic time evo-
lution is a general property of small systems,. whereas for
large systems this evolution exhibits a chaotic behaviour con-
nected to a mixing of the observables For the quantum case

actlon of a small external field called perturbation and deno-
ted by V; we consider only a system having non- degenerate
quantum-mechanical states, so the system energies correspond-
ing to different states are different. Beyond the perturbation
V, we assume the system is a fully isolated object.

We formulate the problem of time topology for a quantum-
-mechanical . system as follows: In a very distant past, the
systern was in a unperturbed stationary state (P) in which —
in the absence of V — it could remain 1nf1n1tely At some
moment the system was perturbed by V, and in a very dlstant
future it. will be found in another stationary state (F); we

2 3; W. Leibniz, Confessio Philosophi. Ein, Dialog, Klostex‘mam
‘Frankfurt a/M., 1967.

. 8 H, Rmchenbach The thlosophy of Space and Time, Dover Pubh-
-cations, New York 1958; J. J. C. Smart (ed), Problems of Spdce and
Time, MacMLHan London 1964; T. Gold (ed.), The Nature of Time,
Cornell University Press, Ithaca 1967; H. Reichenbach, The Direction
of “Time, University of Californi—a Press, Berkeley 1971; A.. Griinbaum,
Philosophical Problems of Space and Time, 2nd ed., A. Riedel,  Dor-
-drecht 1973; J. R. Lucas, A Treatise on Time and Space Methuen, Lon-
don 1973; L Sklar Space Time and Space-time, University of Cali-
fornia” Press, Berkeley 1974; I. Hinckfuss, The Existence of Space and
Time, Clarendon Press,’ Oxford 1975; G. Nerlich, The .Shape of Space,
Umver51ty Press, Cambridge 1976; W H. Newton Smith, The Stryctu-
re of Time, Routledge and Kegan Paul, London 1980; G J. Whm;ro'w
The Natural Philosophy of Time, Clarendon Press, Oxford 1980;
D. H. Mellor, Real Time, University Pess, Cambridge 1981; R. Swm—
‘burné, Space and Time, 2nd ed., MacMillan, London 1981; E. Jaques,
{The Form of Time, Russak-Heinemann, New York 1982; M. Friedmann,
Foundations of Space-Time Theories, Princeton University Press, Prin-
ceton 1983; R. Le Poidevin, Relationism and Temporal Topology:- Phy-
_sws or Metaphyszcs", ,»The Philosophical Quarterly” 40 (1990), 419——432
“4W. fThirring, Lehtbuch der Mathematischen Physik. Band’ 4
Quantenmechantk grosser Systeme, Springer Verlag, Wien 1980,
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assume ‘P £ F. The question we put here is what is the kind
of time path which is followed by the system on its way
from P to F. Before we approach the problem of a time path
for a quantum-mechanical case we examine — in Section 2—4
— the time topology for classical periodic systems.

2. THE OBSERVER; HIS BIRTH, LIFE AND DEATH

As a first step, let us point out that a time toplogy can be
a subjective notion depending both on the properties of the
examined system as well as the perception ability of the
examiner (an observer). We define the observer as a being
who can do (and register) measurements. For example, we may
imagine an observer who can register solely the coordinate
x of the position of a body in a Cartesian coordinate system.
‘Another observer can register, say, the x and y coordinates
of this system; the third observer can measure all three kinds
of coordinates: x, y and z. Beyond these coordinates we may
have observers who can measure — for example — one, or
more, velocity components of the body; other observers can
register other body properties, for example its mass. Finally,
we may imagine an observer whose perception and measuring
ability is infinite. We call Him an External Observer.

Any observer who is able to accept only a finite set of
observations of a system is an observer connected — in some
way — with that sytem. He differs from another observer
whose perception ability, i.e. the (finite) set of measuremnts
which can be done by him on the system and registered, is
different. It is easy to note that the perception ability of an
observer depends on the system properties, in particular the
system complexity. For - example, for a system which is
a staright line identical with the x axis, there is no problem
of how to measure the space coordinates other than x; simi-
larly in order to measure a position in the system which is
a plane there is no problem of how to measure more than two
kinds of independent coordinates, say x and y. Let us assume
that beyond observables different than time any observer can
also measure time. This means that he is able to distinguish
between an earlier and a later event; an event for an obser-
ver means — as a rule — a measurement The time measu-
rements enable him to establish the sequence of events. The
set of all measurements in instants t; enclosed within an
interval of time done in sequence by an observer we call the
life interval of this observer. The earliest of the observations
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done by the observer (corresponding to the smallest t;) we
call his birth; the latest observation (corresponding to the
largest t;) we call his death. We assume the number of obser-
vations in the set of measurements representing the life of an
observer is finite, although no limit can be imposed a priori
on it.

The instants of time t; measured by an observer during his
life can be represented on the time scale given in Fig. 1. These
instants fill the interval BD; see Fig. la.

3. TWO KINDS OF THE SCALE OF TIME

Let a simple (linear) harmonic oscillator oscillate along the
x axis. With the oscillator an observer is connected who can
measure the values of the x coordinate; any measurement of
X is accompanied by a corresponding measurement of t. The
oscillator moves, say, first in the direction of positive x, next
it goes to negative x. We assume the observer starts his mea-
surements immediately after the oscillator moves across the
point x = 0. This means the life of the observer starts at
certain position

XB:EZO (1)

for which t = tz. Next x increases until the positive value
close to the amplitude of the oscillator is attained; then
X begins to decrease, becoming in some instant, a negative
number. At the same time the sequence of the measured
instants t; is an increasing set of numbers. After the smallest
x is attained the. value of x increases. The largest of the
increasing but negative x is some

Xp = —¢ S 0. 2
The next measured value of x is
' Xpr1 =t 0 3)
80
Xpy1 = Xp “

because we assume that the rythm of the oscillator as well
as that of the measurements of x remains unchanged in the
course of the oscillations. This situation repeats infinitely in
accordance with the definition of the oscillator as a perfectly
periodic system. An important feature of a perfect periodic
system is that we have no physical parameter which allows
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us to distinguish between one oscillaltion period and another.
If we assume that there exists a one-to-one correspondence
between the measurements of x and those of t, the full perio-
dicity of the sytem implies the same periodic property for
the time variable. In effect, the time scale for the oscillator
should be not linear but forms a closed line leading to the
equality

oy =1g (5)
similar to (4). This property is represented in Fig. 1b. Topolo-
gically the scale is equivalent to a circle; see Fig. 2. The life
between the birth (tg) and the death (tp) of the observer con-
nected with the oscillator will repeat infinitely and nothing
in the system allows for him to detect the repetitions. These
repetitions can be discovered only by another observer whose
ability to do measurements is larger that that of the observer
connected with the oscillator. Me call such an observer an exter-
nal observer (not capitalized). In order to discover the repeti-
tions of the life of the observer connected with the oscillator,
the external observer should have the possibility of counting
the oscillations. An example of such an external observer is
given in the next section.

4. SIMPLE EXAMPLES OF AN EXTERNAL OBSERVER

Let us consider earth Z which circles about sun S along an
ellipse. An observer is connected with the system. We call
him an internal observer (i.o.) and assume the observer can
measure only the distance r between S and Z and can register
the instants of time t corresponding to different r. Let us
assume the measuring ability (perception) of the observer
begins to work at the smallest possible r = r,;,. The first
measurement rg gives the smallest value of the increasing
r, whereas the last measurement, rp, gives the smallest value
of the decreasing r. The set of measurements repeats infinitely
without the possibility of detection of this fact by the obser-
“ver. Because of this periodicity, the perception of the obser-
ver goes to zero and begins to work again approximately in
the same instant of time, viz. when the distance rp =~ rg is
attained. The time scale is very much similar to that obtained
in Sec. 3 for the harmonic oscilator: it begings at tg, the time
when the distance rg was measured, and ends at tp, the time
when the distance r;, was attained. The totality of the measu-
rements represents the life of i.0. and — since the system .is
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fully- periodic — a circular scale of time should be apphed
The i.0.°cannot detect that tp =~ tp.

Now let us introduce an external observer (e.0.) with respect
to the internal one; the e.o. can measure more kinds of pa-
rameters than i.o. We assume also that e.o. can read the
measurements of i.o. but not vice versa. For example, besides

the distance r = IS»Z’] the e.0. can measure the angle of the
direction SZ in respect to certain constant direction SA which
links sun S with some star A; see Fig. 3. If there is no
precession of the ellipse about the axis perpendicular to the
elhpse plane and going through the point S, the angles

9 = JASZ £8)

measured in each course of Z about S will repeat exactly.
Let us assume the perception of e.o. is switched on at the
angle

o 9 = (FASZ)s @)
which is the angle between SA and SZ in the case of
|Szl = I'min- (8)

If £” and ¢” are infinitesimally small numbers, the first mea-
" surement gives certain

Dy =9+ , 9
and the Iast measurement gives certain B
' 9p = 9+ 2n—¢", (10)

because the next measurement of @ is 95 providing we assume
the earth movement and the rythm of the measurements are
ft’ﬂly periodic. So the life of e.o., though richer than the life
‘of i.0. by the set of measurements of ¢ bettween ¥ and &D,
has the time scale identical to that of i.o.

“"Now let us assume the ellipse performs a slow precession
in its plane. The life of i.0. does not change, but e.o. may now
see-and label different lives of i.o. This is so because the
angle &, therefore the whole set of the observed angles
between ¥ and ¢p, is now different for any course of Z about
S. The distinction between two different courses allows e.o.
to discover that the next course of Z about S begins immedia-
tely after the end of the former course. This means a property
of the system (precession) accompanied by the corresponding
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increase of the ability to do measurements (angles ), make
the time scale of e.o. different than the time scale of i.o. We
may assume, for example, that precession of the ellipse covers
a full angle 2n exactly during v courses of Z about S.. Then
e.o. will discover that his life is v times longer than the life
of io. But qualitatively, the time scale of e.o. remains the
same as that of i.o., which means that the scale of e.o. is also
of a circular shape. This is so because after the precession
covered a full angle 27 the set of the measurements obtained
by e.o. repeats exactly ®. The e.o. cannot discover this repeti-
tion by himself, but this can be done by another observer,
let us call him e.e.0.,, and having a larger ability for doing
measurements than e.o.; simultaneously, the change of a new
physical parameter is necessary. For example, the system Z,
S and A is a part of a galaxy. We assume the plane ZSA on
which Z, S and A are placed, rotates about the axis SA. We
assume e.e.0. is connected with the rotating system and —
beyond r and ¢ — he can measure the rotation angle ¢ of the
plane ZSA about SA. Then e.e.o. will discover that different
full precessions of the ellipse end at different positions of -the
plane ZSA. So e.e.o. has his own time scale, larger than that
of e.o. The e.e.o. may count different full precessions and
discover that the end of one life of e.o. is immediately followed
by his — e.o. — next life.

We summarize this section by concluding that the time scale
of an observer connected with a mechanical sytem may depend
both on his measuring ability and the physical properties of
the system. If the notion of the observer is dropped out, we
may speak about a convenient time scale for a system. A set
of measurements can be performed on a system and the time
scale for any system can be dependent on this set.

5. PERTURBATION OF A QUANTUM-MECHANICAL SYSTEM
AND TOPCLOGY OF TIME

In noun-relativistic mechanics, both classic and quantum,
a straight-linear time scale is usually assumed; Fig. 1. In
preceding sections we considered some mechanical systems
and gave arguments for a different than linear, namely cir-
cular, scale of time; Fig. 2. In fact, the topology of the time
scale 18, to a large extent, a matter of convenience. A weli-

5 L. D. Landau, E. M. Lifszits, Mechanics, Vol. 1 of Course of Theore-
ticel Physics, Nauka, Moscow 1973 (in Russian).
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-known problem of similar nature concerned spatial coordina-
tes and was given in astronomy: the planets movement can be
described equally in the Ptolemaic, or geocentric, system as
well as in the Copernican, or heliocentric, system, but the second.
system is more convenient than the first. The purpose of the
remainder of this paper is to examine the topology of the
time scale for a non-relativistic quantum-mechanical system.
To this purpose we choose the problem of a perturbation of
a non-degenerate stationary state of a quantum-mechanical
system.

If the system is in its stationary state, no measurement do-
ne for it can provide a distinction between a later and an
earlier instant of time, see Sec. 1. In fact, for such a system
the notion of time looses its sense. In reality the stationary
states on only a few quantum-mechanical systems are exactly
known. To such systems belong, for example, a particle in
the field of a constant potential, the harmonic oscillator, and
the states of the non-relativistic hydrogen atom (athough in
description of the last two cases some special functions are
necessary). We often seek for states which differ only slightly
from the exactly known states, for example states of the hydro-
gen atom in the weak electric or magnetic external field. The
states which are well-known are called unperturbed, whereas
states obtained from the action of a supplementary field are
called perturbed states. Schrodinger gave a mathematical pro-
cedure which leads from unperturbed to perturbed states®.
This is a complicated iterative process which represents the
perturbed energies and perturbed wave functions as a combi-
nation of series based on the unperturbed gquantities. Iteration
means that contributions of the next step (higher order) can
be expressed successively by those obtained in a former step
(lower order). This makes the whole calculation extremely
complicated and in practice limited to only a few steps, on
condition that we assume that results calculated in these few
steps adequately approximate the exact solutions.

A more systematic approach to the perturbation method
can be done on the basis of field theory” Although we look
for a perturbed stationary state, the time parameter is intro-

8 L. 1. Schiff, Quantum Mechanics, 3rd ed., McGraw Hill, New York
1968.

7 S. Raimes, Many-electron Theory, North-Holland Publ. Comgp.,
Amsterdam 1972.
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duced into the calculation. This parameter is taken along
the linear scale of time. Let us consider the state of a system
which has the lowest energy, so it is called the ground state.
It is assumed that at time t being very far in the past.
(t=-—00) the state was unperturbed whereas now (t=0) it
is perturbed. There is an operator (the time-development
operator) which leads from the situation at t=-—oc0 to that
at t=0. The interaction operators are the perturbation ope-:
rators represented in the so-called interaction picture and
ordered with the help of the chronological operator. The
sense of this last operator is that it arranges the sequence
of the interaction operators from the earlier to the later
times. So, for example, the product Hy (t1) Hg (t2) of two inter-
action operators does not change on condition t1>t:;, but
changes upon the action of the chronological operator into
Hpg (t2) Ha (t1) if t2 > ti. The intervals of the integration per--
formed over the time variables extend from —oo to zero;
therefore, they correspond to a half of the scale given in
Fig. 1. The time-development operator obtained in the above
way can be averaged over the unperturbed wave function of
the ground state. The imaginary part of the time derivative
of the logarithm of this average represents exactly the cor-
rection to the energy of the unperturbed state, so when added.
to this energy, the correction gives the energy of the per-
turbed state. Such a treatment, although elegant, seems to
make the perturbation calculaticn still more laborious than
the Schrédinger iterative procedure. Especially, the treatment
does not give a clear insight into how different components
terms {(sums), entering the Schrodinger perturbation series,
can be obtained. This situation changes, however, when a cir-
cular scale of time —— similar to that given in Fig. 2 — is
taken into account instead of the linear scale. This kind of
perturbation theory has been presented in some detail else-
where ®. In the next two sections we outline those of its
features which seem to be important from the point of view
of the topology of time.

8 S. Olszewski, Time Scale and its Application in Perturbation
Theory, ,,Zeitschrift fiir Naturforschung” 46a (1991), 313—320.
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6. PERTURBATION ENERGY OBTAINED
FROM A CIRCULAR SCALE OF TIME

The time evolution of a quantum-mechanical system which
‘goes on according to the circular scale of time can be re-
presented by cycles of collisions of this system done with
some perturbation potential V.

We assume that a system which is originally in a station-
ary state n is transfered under the action of the first collision
in a cycle with the potential V into some other state p. After
a sufficiently long time, state p can be considered as station-
ary similarly to n. It is convenient to assume that in state n
the system is characterized by its own time variable t,, in
state p the system has its own time variable t,, etc. Con-
sequently, the collision with V changes t, into t,. Another
collision transfers the system from a stationary state p to
a stationary state g; then the time variable t, is changed
into ty. Further collisions with V can transfer the system to
state r, state s, etc.; accordingly, the time parameter will
assume the time variables t,, t,, etc. The last collision in
a cycle is necessarily that which transfers the system back
into state n. The next collision with V begins a new cycle.
The number of cycles is unlimited and tends to infinity. An
example of a cycle composed of four collisions (three inter-
mediate collisions) is represented in Fig. 4.

Any collision gives its contribution to the energy change
of the system. This change is proportional to the integral of
the product of (a) the complex conjugate of the wave func-
tion of the system before collision, (b) the perturbation po-
tential, (c) the wave function after collision. The integration
is performed over the position-dependent, or spatial, as ‘well
as the time-dependent coordinates. Any collision defines the
space and time variables over which the integration has to
be done. In general, the result of the succesive integrations,
corresponding to succesive collisions, tends to zero. The ex-
ception is the situation when a cycle ends with some col-
lision which transforms the system back to its initial state n.
We say then that a cycle is closed and then we obtain a non-
-zero contribution to energy known from the Schrodinger
perturbation theory.

The integrals over space and time can be separated. The
result of the integration over time for a (closed) cycle of
collisions we call a kinetic part, whereas a similar integral
done over space variables in a cycle is called a static part.
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In order to get different contributions - to the Schrddinger
perturbation energy, the system must be submitted to dif-
ferent (closed) cycles of collisions which begin and end at
state n. The number of collisions in a cycle corresponds with
the order of the Schrodinger perturbation term. If the time
evolution in the collision cycle is represented by a non-
~branched path, then we obtain only one Schrédinger term
for each perturbation order. This is not a satisfactory state
of affairs, since for any perturbation order larger than 2 the
number of the Schrédinger terms (sums) is larger than unity;
for a high perturbation order this excess in the number of
terms becomes very high. In order to get a correct number of
the Schrédinger perturbation terms, branched paths of the time
evolution of a system during its collision cycle should be as-
sumed. Graphically the non-hranched time path for a cycle
can be represented by a single loop (circle), called a main
loop, whereas the branched time paths are composed of se-
veral loops, called side loops, which spring out of the time
loop having the beginning-end state n. The branched time
paths can be obtained with the aid of the elimination prin-
ciple discussed in Sec. 7.

Let us note that in order to .gef a correct representation of
‘Schrodinger’s result for perturbation energy, all collision
cycles have to be different, either in their shape or in the
indices which label the states met in the collisions. A re-
petition of a cycle gives no contribution to energy.

7. ELIMINATION PRINCIPLE FOR EQUAL TIMES

In guantum mechanics of many-electron systems we have
a principle given by Pauli which makes reference to sym-
metry properties of the wave function of the system. If the
wave function of a many-electron system is approximated
by a combination of products of the one-electron wave func-
tions the Pauli principle becomes an exclusion principle
which states that any one-electron wave function cannot be
occupied by more than one electron. The exclusion principle
'is of a fundamental importance for describing physical and
chemical properties of matter. Historically, the explanation
of the periodic system of elements, as well as the electric
and thermal properties of metals, represented its first suc-
cess. The assumption that electrons in a system behave like
identical particles was also at the basis of the principle.

- Although physically it has a completely different sense,

9 — Studia Philosophiae Christianae nr 1
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the formulation of the elimination principle in this paper has
some similarities to that of the Pauli principle. The elimina-
tion principle concerns the time instants of collisions with V
and states that the energy contribution given by any cycle
in which the system has two or more simultaneous collisions
with 'V should be subtracted from the perturbation energy.
At the same time, we postulate that the static part of two
cycles having the same pattern of collisions with V are
identical independently of that whether a cycle is represent-
ed by a main loop, or a side loop of time.

In applying the elimination principle, as well as the po-
stulate of identity for the static parts, the beginning-end
state n is considered in a different way than the intermediate
states in a cycle. First, the own time of state n can never
be equal to the own time of an intermediate state; second,
the beginning-end state for any static part in a cycle re-
presented by a side loop should be put equal to state n. This
equality makes the beginning-end state for a static part the
same for all cycles.

The elimination principle needs to launch a combinatorial
analysis for any collision cycle. This analysis has, as its pur-
pose, to select all cases for which the intermediate collision
times can be equal. Two or more equal collision times divide
the original (main) loop of time into two or more loops. For
example, for a cycle which has three intermediate collisions
{represented by a loop on Fig. 4) we can have the following
cases of equal times: the collision instant 1 is simultaneous
with collision instant 2; collision in 1 is simultaneous with
that in 3; collision 2 is simultaneous with 3; finally we can have
simultaneously all three intermediate collisions (instants 1,
2, 3). The colon on Fig. 5—5bc represents a symbol of equal
times. An important point is that any two times, when put
equal on a given path, should give loops which may touch;
but no crossing of the time path is allowed. For example,
a path is not allowed on which simultaneous time are select-
ed in the way represented in Fig. 6. The allowed kind of
selection of the time paths implies that the sequence of col-
lision times with V should be preserved. If we put collision
time 1 equal to time 3, then time 2 (which is intermediate
between 1 and 3) cannot be equal to time 4 which is later
than 3.

The elimination principle can lead to time paths composed
of many loops. For example, for a cycle of four intermediate
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collisions, where a collision time 1 is put equal to collision
time 4, we obtain a path represented by two loops. However,
the elimination principle requires also to take into account
the case of time 2 equal to time 3 on the path given on the
right side of Fig. 7. This leads to the path represented in
Fig. 7a and a separate Schrodinger term corresponding to it
is attained.

A consequent application of the elimination principle, to-
gether with the postulate of identity of the static parts, gives
a full set of terms of the Schrddinger perturbation series for
energy. The sign with which the terms enter the series is
also given by the elimination principle. Two collision times
assumed equal on a given non-branched path means that the
resulted term has to be subtracted from the term represent-
ing the cycle having a non-branched path. For example, three
collision times assumed equal together, can be considered as:
coming from a path of two equal collision times, so the result
for three equal collision times should be subtracted from
that obtained for two equal collision times, etc.

8. SURVEY

In this paper we examined a problem of the topology of
the time scale. As an alternative to an open, or linear, scale
there are presented arguments for a closed, or circular, scale
of time.

As the first step, we pointed out that the time scale can
be a subjective notion dependent on the physical properties
of a given system and the perception ability of an observer
connected with that system. In a fully periodic classical sy-
stem, there is no parameter which allows for an observer to
distinguish between one cycle of events {(observations) and
another cycle. In this case the circular scale time is naturally
fitted to the periodic properties of the system. The length
of the scale may depend on: (i) the number and kind of para-
meters characterizing the system, (ii) the perception ability
of an observer. In the case of a langer scale both (i) amd (ii}
are larger than in the case of a shorter scale. Only an obser-
ver in a periodic system having a larger scale can detect
the periodicity of a system having a shorter scale.

As a second step, in order to have an idea about the topo-
logy of the time scale for microphysical systems, this topo-
logy was examined for a non-degenerate quantum-mechanical

system perturbed by a small potential. It is pointed out that
9
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the Schrodinger perturbation energy of this system can be
obtained in a rather simple way on condition that a circular
scale of time is assumed. Beginning with some unperturbed
quantum state, the system is submitted to a cycle of collis-
ions with the perturbation potential, after the last collision
in a cycle the system return to its beginnig state and a new
cycle of collisions begins. An elimination principle is taken
into account in order to subtract the contributions given by
the cycles in which two or more simultaneous collisions with
the potential occur. With the aid of this principle there exists
a strict correspondence between the colllision cycles and the
terms of the Schrodinger perturbation series. On the other
hand, the application of a linear scale of time to a non-dege-
nerate ground state can reproduce Schrédinger’s theory of
perturbation energy of a system in a much more complicated
way.
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Olszewski, who stimulated my interest in the problem of
time. I am grateful to Tadeusz Kwiatkowski for his assistance
in checking the components of the perturbation series and
to Joseph A. Dziver for his collaboration in preparing the
English version of the manuscript.
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Fig. 1. Linear scale of time.
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Fig. la, 1b. Linear scale of time for a classical periodic system.
‘B — the first observed point; D — the last observed point. For
a strictly periodic system the observation of D takes place immedia-
tely before the observation B. '



Fig. 2. Circular scale of time.
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Fig. 3. The motion of Z along an ellipse about point S which is in
one of the ellipse foci. The dashed orbit represents precession of the

ellipse about the axis going across S and being perpendicular to the
Figure plane.
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Fig. 4. An example of a cycle of collisions having three intermediate
collisions with the perturbation potential V.
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Fig. 5—5c. Cycles of three intermediafe collisions with potential V
in case when simultaneous collisions occur.
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Fig. 6. An example of a forbidden set of simultaneous collisions for
a cycle of four intermediate collisions. .
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Pig. 7—T7a. Examples of allowed sets of simultaneous -collisions for
a cycle of four intermediate collisions. .
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