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1. INTRODUCTION

In their Grundlagen der Mathematik [GdM, vol. 1, §8,1934] Hilbert 
and Bemays develop a theory of definite descriptions within a logi­
cal and mathematical framework.1 The following quote of Hilbert and 
Bemays captures the focus of this paper (my translation; original in 
footnote2): “In order to set the rules for the use of the new ‘i-symbol’

1 Since we shall for the most part only refer to the 1 st volume o f the 1 st edition of 
GdM , we always refer to that particular volume as GdM.

2 “Um die Verwendung dieses neuen “‘-Symbols’ in unserem Kalkül zu regeln, 
wollen wir uns möglichsteng an das tatsächlich im Sprachgebrauch und insbeson­
dere auch in der Mathematik befolgte Verfahren anschließen, welches darin besteht, 
daß man einen Ausdruck wie ‘dasjenige Ding, welches die Eigenschaft A hat’, über­
haupt nur dann verwendet, wenn bereits feststeht, daß es ein und nur ein Ding von 
dieser Eigenschaft gibt. Wir lassen demgemäß einen Ausdruck urA(x) erst dann als 
Term zu, wenn die zu A (a) gehörigen Unitätsformeln abgeleitet sind. Außerdem müs­
sen wir noch zum Ausdruck bringen, daß in dem genannten Fall der Term ucA(x) eben 
ein solches Ding darstellt, auf welches A(a) zutrifft. So kommen wir zur Aufstellung 
folgender Regel für den Gebrauch des i-Symbols, die wir kurz als die ‘i-Regel’ be­
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in our calculus, we want to comply as closely as possible with the 
actual use of language and in particular with the common procedure 
in mathematics. In this procedure the use of the expression such as 
‘the thing, that has the property A ’ is only used when it is certain that 
there is exactly one thing with this property. Accordingly, an expres­
sion ixA(x) is an admissible term only if the uniqueness formulae for 
A(a) are deducible. We also have to point out that in this case the 
term ixA(x) represents the thing to which A(a) applies. Therefore, we 
now establish the following rule for the use of the i-symbol, which we 
call the ‘i-rule’ in short: if the uniqueness formulae for A(a) are de­
ducible, then ixA(x) (...) is a term from this point onwards, and the 
formula A(ixA(x)) is a deducible formula according to the scheme:

VxA(x)
\/x'Vv(A(x) a A ( v )  —> x=vl 
A(ixA(x))” (H.-B. GdM, p.384)
On H.-B.’s account, definite descriptions are seen as admissible 

terms. The admissibility of definite descriptions depends on whether 
or not the uniqueness condition (to which Hilbert and Bemays refer 
to in the quote as “the uniqueness formulae”) is provable in the for­
mal system (FS) in question. In order to state the uniqueness condi­
tion in a proper manner some terminology is needed.

A definite description within a formal framework is depicted as: 
\xA(x), where ‘ix’ is called the description operator and ‘A(x)’ is called 
the basis o f  the description. ‘\xA(xy is read as: the x such that x is A.

The uniqueness condition is split into two sub-conditions: the ex­
istential and the definiteness condition. Both can be stated formally as 
follows:

(UC1) FS i- SxA(x) (Existential Condition)
(UC2) FS i- VxVy(A(y) a  A(x)—>x=_y) (Definiteness Condition)

zeichnen wollen: Sind für die Formel A(a) die Unitätsformeln abgeleitet, so gilt von 
da an urA(x) ( ...)  als Term, und die Formel A(uA(.v)) gilt als abgeleitete Formel im 
Sinne des Schemas

3xA(x)
VxVvf A(AaA(v~)—» .r=vl A tuA fan.” GdM , p.384.
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Now H.-B. proceed by claiming that if (UC1) and (UC2) are both 
provable in FS for a certain formula A, then \xMx) can be introduced 
in the language.

Following their suggested procedure two questions arise:
(1) Is this procedure not potentially circular, since the set of prov­

able formulas depends on the set of well-formed expressions and vice 
versa; and

(2) Given H.-B.’s procedure of introducing definite descriptions, 
does this procedure yield the decidability of the well-formed set of 
expressions of a given (formal) language?

Usually the (simultaneous) recursive definition of terms and for­
mulas can be turned into an enumeration machine, such that the ques­
tion of whether a given expression belongs to the language or not is 
decided within a finite number of purely mechanical steps. However, 
the answer within H.-B.’s context is not that straightforward. The de­
cidability of the set of expressions depends on the mathematical 
context in which their procedure is embedded. If it is embedded, e.g., 
in Presburger Arithmetic, the set of terms and formulas of a given 
language is indeed decidable. Nevertheless, this does not hold if the 
mathematical context is richer, as in H.-B.’s system Z (H.-B. GdM, 
p. 371). But our investigation is set within Z’s frame.

The main focus of this paper is the question (1). Our approach 
to the alleged circularity is basically this: at the outset (Section 2) 
we shall state a simultaneous inductive definition for language L* of 
arithmetic with definite descriptions (i.e., i-terms) and an inductive 
definition of a language Lo of arithmetic without i-terms. L* will be 
enumerated by some fixed enumeration E, although this enumera­
tion will not be stated explicitly. Next a formal system HB based 
on Lo (H.-B.’s system Z) will be presented. In order to extend Lo 
to L i we make use of the enumeration of L*. Let some formula A[ 
be the first formula of L* which is in Lo such that H B lo i- 3xAi(x) 
and H B lo FS h VxVy(Ai(y) aAi(x)—>x=y)- Then ixAj(x) is added to 
Lj andij(Ai(x) is a term of (extension-) level 1 andAj(\xAj(x)) is a for­
mula of Lj. Then we define a provability relation for H B li and add 
a special instance of the H.-B.’s i-rule.
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Section 3 provides a semantical treatment of H.-B.’s account close­
ly related to the methods of section 1. Section 3 states an elimination 
procedure (by proof-theoretic means). We would also like to mention 
that there are several accounts of H.-B.’s theory of definite descrip­
tions in the literature.3 All those approaches are “inspired” by H.-B.’s 
account but in our opinion they do not explicate some necessary de­
tails of the original theory.

2. SYNTAX

As mentioned above, we start with two languages, L* and Lo. L* 
will contain i- terms, and its enumeration E will serve as the basis for 
the extensions that will be carried out depending on the formal sys­
tem HB, E, and the provability of the uniqueness condition of the 
basis of the i-term.

2.1. LANGUAGE L*AND L0

Alphabet

Individual constant: o
a, b , c , ... (with or without indices) are free individual variables.
x ,y ,z ,  ... (with or without indices) are bound individual variables.
Logical signs: - i ,  a , v , <->, 3, V, =, v
Mathematical signs: ', +, x
Auxiliary signs: (, )

2.1.1. SIMULTANEOUS INDUCTIVE DEFINITION OF TERMS AND 
FORMULAS OF L*

1) Every free variable and o is a term of L*.
2) If s and t are terms of L*, then s', (s + 1) and (5  x t) are terms of L*.
3) If s and t are terms of L*, then (5=/) is a formula of L*.

3 [Lambert 1999; Lambert 2003], [Stenlund 1973], [Kleene 2000], [Kneebone 
1965]. We note that our approach is similar to [Lambert 1999; Lambert 2003].
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4) If A and B are formulas of L*, then —A, (.AaB), (AvB ), 
(A—>B), (A<->B) are formulas of L*.

5) If A(a) is a formula of L* such that the bound variable x does 
not occur in

A(a), then VxA(x) and 3xA(x) are formulas of L*.
6) If A (a) is a formula of L* such that the bound variable x  does 

not occur in
A(a), then ixA(x) is a term of L*.
7) Nothing else is a formula or a term of L*.

The notation A (a) is explained in the following way: the free vari­
able a marks the occurrences in A at several places (not necessarily all 
and maybe none). A(x) is the formula which is obtainable from A(a), if 
each free variable a is substituted by the bound variable x on the men­
tioned occurrences. For our reconstruction of H.-B.’s account of 
i-terms, we think of some fixed enumeration of the expressions of 
L*. The importance of this enumeration will be seen in section 2.4.

2.1.2. INDUCTIVE DEFINITION OF L0

Terms o f L 0

1) Every free variable and o are terms of level 0 and in L().
2) If s and t are of level 0 and in Lo, then s', (s+t) and (s*t) are of 

level 0 and in L0.
3) All the terms of Lo are of level 0 (and no other terms are in 

LO)-

Formulae o /L #

1) If 5 and t are terms of Lo, then (s=t) is a formula of Lo.
3) If A and B are formulas of Lo, then -.A, (Aa B), (Av B), 

(A—tB), (A<r+B) are formulas of Lo.
4) If A(a) is a formula of Lo s.t. x does not occur in A(a), then 

VxA(x) and 3xA(x) are formulas of Lo*
5) Nothing else is a formula of Lq.
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2.2. HB BASED ON Lo

The formal system called HB is similar to H.-B.’s system Z (GdM., 
p. 371).

Logical Axioms Mathematical Axioms

(LAx 1) Every Tautology. (MAx 1) -i3x(x' = °)
(LAx2) VxA(x)—>A(r) (MAx2) VxVy(x'=y' —> x=y)
(LAx3) A(r)^>3xA(x) (МАхЗ) Vx(x+o=x)
(LAx4) Vjc(jc=x) (MAx4) VxVy(jc+y')=(x+y)')
(LAx5) VjcVy(x=>>-K/l(jc)-^(y)) (MAx5) Vx(xxo=o)
(MAx6) VxVy(xx/)=(xxy)+x)
(MAx7) A (°)aVx(/1(x)v —>Л(х'))—>Vx^((x)
Rules o f Inference

(Det)A .A -> B  tat В -> A(a) ф ) A(a)-> B
В VxA(x) 3xA(x) В

The free variable a must not occur under the inference line in (a) 
and (P).

2.3. PROVABILITY IN HB BASED ON Lo

A formula is an immediate consequence of one or two other for­
mulas written above the line, if it has the form shown below the line 
of (Det), (a) or ф).

We shall write ‘HBlo’ instead of the longer phrase: ‘HB based on Lo’.

2.3.1. INDUCTIVE DEFINITION OF PROVABLE FORMULA IN HBlo 

(PO1) Every axiom is provable in HBLO-
(P02) If A is provable in H Blo, a°d В is an immediate consequence 

of A, then В is provable in HBlO-
(P03) If A and В are provable in H Blo, and С is an immediate 

consequence of A and B, then С is provable in HBlO-
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(P04) A formula is provable in HBlo only as required by 
(P01HP03).

If a formula A is provable in H B lo we write: hblo i- a .

2.4. EXTENSION FROM Ln -1 TO Ln

In the following the important clause is 3).
1) If t is a term of level n -1 and t is in L/j.j, then t is a term of

level n and is in Ln .
2) If A is a formula of L n.\ ,  then A is a formula of Lw.
3) Let A. be the first formula in the enumeration of L*, which is in 

L/j-i such that
HBLn-1 h BxAJix) and HBLn | h VxVy(A.(x) a  A.(y) -> x=y) then 

vcA (x) is a term of level n and is in Ln.
4) If s and t are terms of level n and s and t are in Lw, then s', (s+r)

and (s*t) are of level n and in LM.
5) If s and t are terms of L«, then (s=t) is a formula of Ln .
6) If A and B are formulas of Ln , then —A, (AaB), (AvB), 

(A-+B), (A<->B) are formulas of Ln.
7) If A(a) is a formula of Ln s.t. x  does not occur in A(a), then 

VxA(x) and 3xA(x) are formulas of Ln.

Remark

If there is a term like i^(x)+tjcB(x) or \xA{x)*\xB(x) such that the 
level of one term is greater than the level of the other, then the level 
of the term \.xA{x)+\xB(x) or ixA{xy \.xB{x) is that of the greater term.

2.5 HB BASED ON Ln

First, we simply have to restate every axiom and inference rule of 
HBLO f°r HBlai- Second, we add the i-rule as a further rule of in­
ference of HBl /j, whereas Aj is a formula of Ln:

(i-rule) 3xA(x) VxVvM (xl aA (v) —> x=vl 
Ai(ixAi(x))
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3. SEMANTICS

In this section we shall give, in addition to the syntax, a semantical 
treatment (i.e., we provide the standard model for Peano Arithmetic) 
of our reconstruction of Hilbert and Bemays’ procedure. This will 
be done closely along the lines of the syntax, thereby making use 
again of the enumeration L*. It should be bome in mind that due to 
Godel’s theorems the semantics is by far stronger than HB’s proof 
theory.

3.1. BASIS: <N,O0) FOR Lo

We begin with the structure (N, cp0) for LO as the basis for the se­
mantical treatment of H.-B.’s view. Instead of writing o'(nlimes) we write 
simply n; e.g. o = 0, o' = X, o" = 2, etc.

1) N is the set of natural numbers (including 0), i.e. {0, 1, 2, 3, ...}
2) (p is an interpretation function such that the following condi­

tions hold:
2.1)q>0(°) = 0,
2.2) (p0(a) g  N, for each free individual variable a of L#.
2.3) cp0(') is the successor function from N to N, such that: 
<P0(O =
2.4) (p0(+) is the sum function from N2 to N such that <p0(s+t) = 
%(s) + tpo(0,
2.5) cp0(x) is the multiplication function from N2 to N such that: 
%{s*t) = cp0(s) x <P0W.
2.6) cp0(=) is the identity relation in N2 such that: (p0(s=r) = T iff 
%(s) = <Po(0>
2.7)9oM )  = TifF(po04) = F,
2.8) %{A-+B) = T iff cp^) = F or %(B) = T,
2.9) (p0(,4A5) = T iff cp0(^) = T and %(B) = T,
2.10) cp0(^v5) = T iff<po04) = T or cp0(5) = T,
2.11) %(A<r±B) = T iff <p0(^) = %(B),
2.12) (p0(Vx^(x)) = T iff (p0(/l(m)) = T for each natural numbert m,
2.13) (p0(3x4(x)) = T iff cp0(^(m)) = T for some natural numbert m.
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It is easily seen that <po(20=w holds.

3.2. EXTENSION FROM Ln -1 TO Ln

1) For every term t of level n- 1 in Ln_i: cpn(t) = tp«-1 (/).
2) For every formula^ of Lw.i: <pn04) = (pn-l04).
3) Let Aj be the first formula in the enumeration of L*, which is 

in L/,-1, such that (pw.i(3x4/(x)) = (pw. 1 (\/xVy(Aj(x)*Aj(y)^>’X=y)) = 
T, then Lu-i is extended to LM and ixA j(x) is of level n and in Lw and 
Ai(ixAi(x)) is a formula of Ln .

4) If <p„.\(3xAi(x)) = (p«-1 (V*Vy(/l/(x)A^;(y)^x=y)) = T, then 
there exists in the standard interpretation an m e N, such that q>/j. 
\{m)=m and (p«-l04(w))=T. We take this m and define cpw(v^/(x)) = m.

Finally we (could) define a structure (N, cp®) based on all structures 
(N, (pw); a formula A is valid in (N, cp©) iff cp©(^)=F.

It is easily proved that every axiom and every rule of inference of 
HBl« is valid in (N, cpw)

4. CONCLUDING REMARKS

H.-B.’s main intention is that every singular term denotes. This 
is ensured within this circular-free reconstruction. We have presented
H.-B.’s account in the context of a mathematical framework. Neither 
HBL„ nor the set of all well-formed expressions is decidable. For 
example Camap [Camap 1956]4 admits that H.-B.’s approach might 
be convenient for practical work with a logico-mathematical system, 
even though he concedes that following H.-B.’s theory leads to awk­
ward conclusions. For instance the set of well-formed expressions de­
pends on the contingency of the world, when the background theory 
is not a mathematical (as we did in this paper) but a physical theo­
ry. Scott [Scott 1990] challenges H.-B.’s view by stating that their

4 [Camap 1956,34]. He continues: “For systems also containing factual sentences, 
the disadvantage would be still greater, because here the question o f whether a given 
expression is a sentence or not would, in general, depend upon the contingency of  
facts.”
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approach does not really justice to the mathematical practice, since 
even mathematicians introduce t -terms without proving the unique­
ness condition first.

Nevertheless, we think that the approach presented here has its mer­
its, such as the guarantee that an introduced i-term refers. Furthermore, 
it might be interesting to investigate a proof for the existence of god 
(like Anselm’s argument) in a way analogous to the one presented 
here.

Lambert [Lambert 1999; Lambert 2003] also provided reconstruc­
tions of H.-B.’s account. However, we hold the view that our recon­
struction is advantageous in at least two respects: (1) As it has been 
constructed here, the theory is embedded in some other theoretical 
framework that exceeds pure logic, e.g. Peano Arithmetic. And this 
point is noteworthy since whether a definite description can be intro­
duced in a theory depends the on the strength of its provability relation.
(2) It is not very clear if e.g. Lambert (Lambert 1999, especially pp. 
275fi] does really abandon the alleged circularity with which Hilbert 
and Bemays account is confronted with.

We want briefly turn to the relationship between i-terms and e-terms.5 
First we adopt the formation rules for L# (turning it into a simultaneous 
recursive definition of terms and formulas): If A (a) is a formula such 
that the bound variable x does not occur in it, then sA(x) is a singu­
lar term. Second, we interpret the e-term (informally) in the following 
way (supposing tacitly that the domain is the set of natural numbers): if 
there is at least one natural number n such that A(n) is true, then eA(x) 
refers to some natural number with property A. e-terms may be thought 
of indefinite descriptions. H.-B. chose the

(e-formula) A(t) —> A(et̂ (x))
as the new axiom for e-terms.
Now if HBLk-1 b 3xAi(x) and HBLk-1 FS h VxVy(Ai(y) 

AAi(x)->x=y), then by the (i-rule): HBjjfc h Ai(ixAi(x)).
But in the light of the (e-formula): HBjjt h Ai(iAi(x)) —>Ai(eAi(x)) 

and hence HBjjt h Ai(eAi(x)).

This research is supported by the Alexander von Humboldt Foundation.

5 [Cf. Hilbert, Bemays 1939; Leisenring 1969].
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DESKRYPCJE

Streszczenie

Rozważania skupione są na pojęciach deskrypcji określonych i nieokreślonych. 
Prezentuje się znaną teorię deskrypcji określonych sformułowaną przez Bertranda 
Russella w „Principia Matematica”. Rozważa się przy tym niektóre z problemów 
związanych z tym podejściem. Mniej znane są badania Russella dotyczące deskrypcji 
nieokreślonych. W tym przypadku także przedstawia się problemy związane z kon­
cepcją Russella i parę propozycji ich rozwiązań.

Słowa kluczowe: deskrypcje, D. Hilbert, P. Bemays


