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Abstract: Th e article examines the limitations of circular models used in 
psychology and pedagogy, focusing on their inherent constraints due to 
their two-dimensional geometric structure. It highlights that circular mod-
els face challenges in maintaining interpretability and accuracy with an 
increasing number of variables, prompting the exploration of alternatives. 
Proposed spherical models, by introducing a third dimension, address the 
issue of “dimension compression,” enabling more precise representation 
of relationships between variables. 
A practical application example is the use of Support Vector Machines (SVM) 
with a Radial Basis Function (RBF) kernel, which allows effi  cient data analysis 
in three-dimensional space. Th e article also discusses potential benefi ts and 
limitations of spherical models and outlines directions for future research to 
support the development of methodologies and analytical tools.
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Introduction
Circular models have been a popular tool in psychology and pedagogy 

for years. They are used to represent and classify types as well as to exam-
ine relationships between them within various theories, such as the theory  
of upbringing mistakes (Gurycka, ), value models (Schwartz, ), or 
the circular model of maternal behavior styles (Schaefer, ). In circular 
models, types are visualized based on variables that operationalize the traits 
or aspects of the analyzed phenomenon. Relationships between variables are 
geometrically represented as angles and distances (r = cos(α)), allowing for 
a precise depiction of interconnections between types. This process facilitates 
the organization of data and their clear presentation in a geometric space.

Their foundation lies in trigonometry, based on relationships between 
angles and correlations, which play a key role in describing connections 
between variables (Fabrigar et al., ). This article examines the meth-
odological assumptions and limitations of circular models, analyzing their 
significance and potential drawbacks in the context of typologization in 
psychology and pedagogy.

The primary goal of circular models is the visual representation  
of theoretical types and their interconnections. This enables researchers 
to better understand complex relationships and draw meaningful conclu-
sions from a geometric perspective (Lingoes, ). However, as the number  
of types increases, the angles between them decrease, making empirical veri-
fication of the models more challenging. This limitation becomes particularly 
evident when analyzing complex theories and multidimensional data.

In classical models representing the typology of theories, it is expect-
ed that they explain three main aspects: (a) relationships between types,  
(b) their affiliation to higher-order structures, and (c) relationships between 
higher-order structures (Heck & Thomas, ). The circle, as a geometric 
figure, is often used to visualize these aspects. However, applying this model 
may not be suitable for all theories, leading to limitations in the analysis of 
trait typologization.

This article analyzes the formal assumptions and limitations of circular 
models in the context of their application to the typologization of psycho-
logical and pedagogical theories. The term “formal assumptions” refers to 
the mathematical foundations of the models, such as trigonometric rules 
(e.g., correlations described by angles, r = cos(α)) and geometric principles 
for arranging dimensions in two-dimensional space.

The article also aims to justify the need to explore alternative solu-
tions that can overcome the limitations of circular models. In this context, 
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three-dimensional models are proposed, which, by adding a third dimension, 
offer the possibility of more precise representation of complex theoretical 
structures. This proposal aims not only to improve empirical verification but 
also to enable more advanced analyses of relationships between types within 
psychological and pedagogical data.

The spherical models proposed in this article represent an innovative 
solution, developed by the author as a response to the limitations of circular 
models.

Methodological and statistical assumptions of circular models  
used for typologizing theories

Circular models are used in psychology and pedagogy to describe var-
ious relationships and structures, often serving as graphical representations 
of typologies. They allow for a clear depiction of the connections between 
variables within a geometric space.

Relationships between types. The arrangement of types in circular 
models depends on the specific theory that the model represents. Typically, 
the types are organized in a manner that reflects their theoretical connections. 
In practice, the angle between adjacent types determines the expected corre-
lation between them, and their placement on the circle enables researchers 
to quickly identify patterns.

As Lingoes notes: “Since we are talking here about a factor model, it 
is worth remembering that the points in the factor space represent the ends 
of vectors originating from the coordinate system’s origin, and the solution 
takes into account both the length of these vectors and the angles they form. 
In other words, rij =hi  hj  cosΘij  (the reproduced correlation between variables 
i and j equals the product of the lengths of the respective vectors and the 
cosine of the angle between them). Similarly, aik  = hi  hk  cosΘjk ,, meaning 
the factor loading of k on variable i equals the product of the vector lengths 
(where hk=, k=,,…,m from the model’s constraints) and the cosine of the 
angle between the test and the factor.” (Lingoes, , p. ).

Trigonometric principles play a key role in describing the relationships 
between types. The angle between types indicates the expected correlation.

Regulating relationships using the cosine of the angle in circular 
models. The regulation of relationships using the cosine of an angle in circular 
models involves applying the cosine of angle α to determine the connections 
between variables representing types. Cosine values range from , indicating 
a strong positive correlation, to -, signifying a strong negative correlation, with 
a value of  representing no correlation. This mathematical approach allows 
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for the effective verification of model alignment with empirical data. It enables 
researchers to precisely define the relationships between types, ensuring that 
the circular model aligns with the empirical findings.

In theoretical analysis, the cosine of angle α is used to determine the 
strength of the relationship between variables in circular models. Variables 
that are more strongly related are positioned at smaller acute angles, while 
those with larger obtuse angles are negatively related. This structure facili-
tates the accurate representation of both positive and negative relationships 
between variables and the identification of independent dimensions.

Figure  illustrates how the cosine of angle α affects correlations be-
tween variables. A high cosine value at ° indicates maximum positive cor-
relation (r = ). At °, where the cosine value reaches -, it corresponds to 
maximum negative correlation. In summary, trigonometric assumptions in 
circular models form the foundation for their interpretation and analysis, 
enabling their application in multidimensional psychological and pedagog-
ical research.
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Figure 1. Cosine of angle alpha (α) and its corresponding correlation (r). The sharper the angles, the stronger the positive 
correlations. When angles are obtuse, the correlations are negative. The maximum positive correlation occurs at an angle of 
0º (r = 1), while the maximum negative correlation occurs at an angle of 180º (r = -1). An angle of 90º indicates no correlation.
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The belonging of basic variables to higher-order structures
In circular models, the belonging of basic variables to higher-order 

structures is described using axes that divide the circle into segments. This 
approach allows researchers to determine which variables belong to the 
same higher-order structures (Gurycka, ). Lower-order structures rep-
resent individual variables, such as specific parental mistakes (e.g., indulging, 
self-accentuation). In contrast, higher-order structures group these variables 
based on their shared characteristics, forming broader categories, such as 
warm mistakes and cold mistakes. This method enables researchers to trace 
how specific variables combine into more complex systems (higher-order 
structures), facilitating the process of analysis and interpretation.

For example, in the circular model of parental mistakes by Professor 
Antonina Gurycka, three axes divide the circle, allowing for the identification 
of parental mistakes and their belonging to different categories. The struc-
ture of this model is designed to illustrate how various parental mistakes 
are interconnected and to which categories they belong. Warm mistakes, as 
a higher-order structure, include lower-order variables such as indulging, 
self-accentuation, doing things for the child, and idealization. In contrast, 
cold mistakes encompass variables such as rigorism, aggression, constraining 
child’s activity, and indifference.

Variables focused on the child and their tasks include doing things for 
the child, idealization, rigorism, and aggression, while mistakes centered on 
the parent and their tasks include constraining the child’s activity, indiffer-
ence, self-accentuation by the parent, and indulging.

According to Szymańska and Torebko (), this arrangement in the 
circular model allows for the identification of pairs of mistakes that can be 
considered twin mistakes, as they belong to the same areas in the geometric 
space defined by the axes of the circle. For example, rigorism and aggression 
fall within the space of cold mistakes as well as mistakes focused on the child. 
Examples of such twin pairs include: rigorism-aggression, constraining the 
child’s activity-indifference, self-accentuation-indulging, and doing things 
for the child-idealization. These twin mistakes illustrate the relationships 
within lower-order structures as well as their belonging to higher-order 
structures, enabling a more comprehensive analysis of their interrelations 
(Szymańska and Torebko, ).

Circular models that use axes to divide the circle into segments provide 
researchers with a tool for a more detailed analysis of complex higher-order 
structures. This allows for a precise understanding of the connections and 
relationships between various variables representing types. Including these 
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structures in the analysis not only facilitates the grouping of variables into 
categories (higher-order structures) but also enables the examination of the 
hierarchical dependencies among these categories and the detailed relation-
ships between their components (lower-order structures).

Formal assumptions for verifying circular models
The verification of the accuracy of circular models is based on the 

assumption that theoretical relationships must be confirmed by empirical 
data (Wright et al., ). This means that the correlations predicted by the 
model should correspond to empirical reality, similar to methods used in 
structural equation modeling (Bartholomew et al., ; Hair et al., ; 
Heck and Thomas, ; Szymańska, ). Often, these models are verified 
using the method of multidimensional scaling (Biela, ).

In circular models, trigonometry serves as a key tool for determining 
relationships between types and their belonging to higher-order structures, 
using angles to visualize and analyze the level of correlation. A circular model 
assumes that correlations between types, represented by angles, should align 
with the cosine values of angle α. For instance, variables separated by a º 
angle should exhibit a positive correlation (r ≈ .), while variables located 
at opposite angles (º) should exhibit a correlation close to -. If empirical 
correlations deviate from these values—e.g., features at a º angle show 
a correlation of -. or opposite features at a º angle show a correlation 
of -.—this may indicate errors in the model. Such discrepancies can result 
from improper operationalization of features, measurement errors, or the 
model’s inadequacy in representing reality. For the model to be considered 
valid, it requires that correlations align with the predicted cosine values  
of angle α.

In summary, the verification of circular models requires a rigorous 
approach, including precise analysis of correlations and angles to compare 
empirical results with theoretical assumptions. Statistical tools, such as fac-
tor analysis, can support this evaluation process by comparing correlation 
matrices to ensure that the theoretical model accurately reflects observed 
phenomena. Only models that meet these criteria can be considered valid 
and reliable.
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The issue of the number of variables (types) in circular models
Circular models, despite their utility in psychology and pedagogy, 

face limitations related to the number of variables that can be effectively 
represented within a circle. As the number of variables increases, the angles 
between them decrease, potentially causing distortions and challenges in 
empirical verification. These models, being two-dimensional geometric 
figures, have limited space for representing types. An excessive number  
of variables can lead to changes in correlations and hinder accurate analysis.

For instance, if a circular model includes eight variables, the nearest 
neighbors will be separated by an angle of º, corresponding to a correlation 
of r = .. As more variables are added to the circular model, the angles 
between them become smaller, leading to higher correlations and potential 
difficulties in interpretation.

Theoretically, one could place as many as  variables within a circle, 
each separated by an angle of º, corresponding to a correlation of r = .. 
However, practical psychometric limitations suggest that at such high cor-
relations, measurement accuracy becomes problematic.

Therefore, it is recommended to limit the number of variables in 
a circular model to approximately –, which allows for maintaining ap-
propriate geometric relationships and interpretability. Correlation values 
ranging from cos º = . to cos º = . seem to represent the upper 
boundary of contemporary psychometric capabilities, ensuring analytical 
coherence and minimizing the risk of interpretive errors.

Spherical models: a future alternative to circular models
In response to the significant limitations of circular models, alternative 

approaches such as three-dimensional spherical models should be considered. 
These models introduce an additional spatial dimension, allowing for a more 
precise representation of relationships between types and eliminating issues 
arising from the compression of dimensions in traditional two-dimensional 
models.

Spherical geometry differs from flat geometry in several key aspects. 
While circular models operate within a constrained two-dimensional plane, 
spherical models add an extra dimension, providing greater flexibility in 
the arrangement of variables. This allows data to be distributed in three-di-
mensional space, enabling a more accurate depiction of relationships among 
various variables.

The addition of a third dimension in spherical models makes it pos-
sible to include a larger number of types while maintaining appropriate 
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distances between them. This approach eliminates the problem of “crowd-
ing” variables, a common issue in circular models that often results in a loss  
of interpretability.

Transitioning from circular to spherical models also opens up new 
possibilities for empirical verification. Circular models face constraints im-
posed by geometric relationships in two-dimensional space. As the number 
of variables increases, their proximity can lead to misinterpretations of cor-
relations. In spherical models, this issue is mitigated, as the third dimension 
provides additional space for arranging types.

Spherical models may be better suited for representing complex theo-
ries, especially when the number of types exceeds the level that can be effec-
tively verified in circular models. By adding a third dimension, researchers 
can more accurately represent relationships among structures (types) and 
achieve more consistent empirical results.

Adopting spherical models, however, introduces new challenges. Re-
searchers must understand spherical geometry and how to arrange data within 
three-dimensional space. This requires modifications to existing analytical 
methods and the development of new tools tailored to three-dimensional 
geometry.

Despite these challenges, spherical models offer several new oppor-
tunities. The three-dimensional structure enables more faithful representa-
tion of relationships among variables, leading to more accurate and reliable 
interpretations of complex theories.

Researchers can leverage the additional dimension to create models 
with greater precision and higher reliability, which are difficult to achieve 
in traditional circular models.

Spherical models represent a forward-thinking alternative to circu-
lar models, particularly when the number of types exceeds the capacity of 
two-dimensional planes. While they demand a new approach to analysis and 
empirical verification, their application provides the potential for more compre-
hensive representation of complex theories. However, realizing the full potential  
|of this approach requires the development of new analytical and visualization 
tools to accommodate the unique demands of three-dimensional modeling.
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Verification of spherical models using SVM and RBF kernel
The verification of three-dimensional spherical models using Support 

Vector Machines (SVM) with a Radial Basis Function (RBF) kernel enables 
the introduction of an additional dimension to the analysis, transitioning 
from circular models to three-dimensional spherical models in psychology 
and pedagogy. Such a spherical model is an advanced tool for representing 
and analyzing complex relationships among diverse variables, where features 
or variables are depicted in a three-dimensional space, forming the shape of 
a sphere. Their positions relative to one another reflect relationships such as 
similarity or opposition.

Spherical models are verified using SVM with an RBF kernel, which 
effectively handles nonlinear and three-dimensional data. The RBF kernel 
employs a function that maps data from a lower-dimensional space to a high-
er-dimensional space, facilitating the identification of linear separations. This 
approach is particularly crucial in cases where relationships among variables 
are complex (Prasad et al., ).

The RBF kernel in the SVM method introduces an additional compu-
tational dimension, meaning that for two-dimensional models (e.g., circular 
models), it can project data into three-dimensional space, and for three-di-
mensional models (e.g., spherical models), it enables analysis in four-dimen-
sional or higher-dimensional spaces. In this way, the RBF kernel remains 
a versatile tool for various geometric structures, supporting the analysis  
of nonlinear relationships regardless of the initial dimensionality of the 
data. These capabilities open new perspectives for analyzing psychological 
and pedagogical data, paving the way for more complex and precise models.

When analyzing three-dimensional data, the SVM algorithm seeks to 
find a hyperplane that optimally separates data into different classes. This 
transformation into higher-dimensional space allows for the application  
of the so-called kernel trick, enabling computations regarding similarities in 
this high-dimensional space without directly modeling the higher dimension. 
As a result, computational complexity is significantly reduced, enhancing 
the efficiency of analyses.

The verification process of the model occurs in three stages:
. Data transformation: Data representing various psychological 

types are transformed using the RBF kernel function, allowing 
them to be represented in higher dimensions, which facilitates 
the discovery of more complex relationships.
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. Hyperplane optimization: The SVM algorithm aims to identify 
a hyperplane that separates data classes with the maximum 
margin, minimizing classification errors.

. Classification and verification: The classification system ena-
bles understanding and interpreting relationships between dif-
ferent psychological types in three-dimensional space, offering 
new perspectives on variable relationships that may have been 
challenging to detect previously.

The application of SVM with an RBF kernel in three-dimensional 
models in psychology and pedagogy opens new possibilities for researchers, 
enabling a deeper understanding of complex interpersonal and psychological 
relationships. Examples of applications for this model include personality 
data analysis, where traits such as extraversion, neuroticism, and openness 
to experience are examined in the context of their influence on interpersonal 
behaviors. Another example could be studying the relationships between 
various emotional states and their connection to decision-making abilities.

Through the presented tools and methodologies, spherical models 
supported by SVM techniques with RBF kernels create opportunities for 
advancing our understanding of complex psychological and pedagogical 
dependencies, contributing to a deeper comprehension of human psyche 
and behavior.

Based on Figure , the visualizations illustrating the application  
of the SVM method with an RBF kernel for data separation can be explained 
as follows:

. Figure a: The first illustration depicts two data classes (green 
and pink spheres) in a two-dimensional space. The data points 
from both classes are shown to be very close to each other in 
some areas, with some elements even “mixing.” This arrangement 
makes it challenging to clearly separate the classes using simple 
classification methods.

. Figure b: The second illustration attempts to separate the two 
data classes (green and pink spheres) by shifting some of the 
spheres in the two-dimensional space and introducing a straight 
line as a boundary. This adjustment allows for better separation 
of the classes, yet it does not fully resolve the issue of complete 
separation, highlighting the need for introducing a third dimen-
sion to achieve more thorough data separation.
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Figure 2. Illustration of the verification of spherical models using SVM with an RBF ker-
nel, based on (Prasad et al., 2010).

. Figure c: The third illustration presents a graph with data points 
represented as crosses in a two-dimensional Cartesian space. Red 
and blue crosses represent two different data classes. In this sce-
nario, a straight line might suffice for separation; however, the 
absence of a third dimension limits the potential for a more com-
prehensive separation.

. Figure d: The fourth illustration displays a three-dimension-
al model where data are represented by crosses positioned in 
a three-dimensional space. A hyperplane (green) is employed to 
effectively separate the data into classes (red and blue crosses). 
The addition of a third dimension enables the creation of a clearer 
division, which is not achievable in two-dimensional space.
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The use of Support Vector Machines (SVM) with an RBF kernel to 
introduce higher dimensions in data analysis enables more effective sepa-
ration of data, which may be challenging to separate in lower-dimensional 
spaces due to geometric constraints. This highlights the importance of apply-
ing appropriate mathematical techniques to analyze complex relationships 
within the data.

Verification of circular models using SVM with RBF kernel:  
prediction of variables in Gurycka’s parental mistakes model

To empirically verify the assumptions of Gurycka’s circular model 
of parental mistakes, a Support Vector Machine (SVM) with a Radial Basis 
Function (RBF) kernel was applied. The analysis aimed to assess the extent 
to which variables located in the closest proximity within the circle allow for 
the prediction of the value of the dependent variable. It should be noted that 
the introduction of the third dimension through radial functions in the SVM 
method is computational in nature. The data in the circular model remain 
two-dimensional in a geometric sense, but the three-dimensional computa-
tional space enables a better representation of relationships between variables.

For each variable in the circular model, its results were predicted based 
on two neighboring variables within the circle’s structure.

Table  presents the results of the SVM regression analysis with the RBF 
kernel for each dependent variable in Gurycka’s circular model of parental 
mistakes. The correlation coefficient values between the results predicted by 
the model and the actual results ranged from r=. to r=., indicating 
moderate predictive accuracy.

Table 1. Results of the SVM Regression Analysis with the RBF Kernel
Dependent 
Variable

Predictors Number 
of Support 
Vectors

Mean Squared 
Error (Test)

Std. Dev. Ratio 
(Test)

Correlation 
Coefficient 
(Test)

Rigorism Aggression, 
Idealization

224 13.546 0.914 0.427

Aggression Rigorism, 
Constraining 
Child’s Activity

244 14.153 0.934 0.404

Constraining 
Child’s 
Activity

Aggression, 
Indifference

212 9.649 0.94 0.371
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Indifference Constraining 
Child’s 
Activity, Self-
Accentuation

246 7.191 0.967 0.257

Self-
Accentuation

Indifference, 
Indulging

239 17.996 0.927 0.379

Indulging Self-
Accentuation, 
Doing Things for 
the Child

252 21.601 0.926 0.418

Doing Things 
for the Child

Indulging, 
Idealization

206 18.122 0.905 0.486

Idealization Doing Things 
for the Child, 
Rigorism

225 14.944 0.949 0.33

The analysis showed that the number of support vectors in predict-
ing variables within Gurycka’s model of parental mistakes was moderate, 
ranging from  to , indicating a relatively complex nature of the data. 
A moderate number of support vectors suggests that the algorithm had to 
account for a significant number of decision points to accurately separate 
classes and predict the dependent variable values. These results highlight that 
the relationships between variables in the model are nonlinear and therefore 
require more advanced modeling.

Interpretation of SVM model results with RBF kernel in light of circular 
model assumptions

The circular model assumes that the distance between variables in 
a geometric structure (expressed as an angle in the circle) corresponds to 
the strength of their mutual relationships. Theoretically, variables located in 
close proximity (e.g., at a ° angle, where cos(°) = .) could potentially 
explain up to % of the variance in outcomes (based on the classical assump-
tion that a correlation of r = . leads to R2 = .) (Kinnear & Gray, ).

In the SVM model, results are evaluated based on the correlation 
between the values predicted by the model and the actual values. This cor-
relation serves as an indicator of the model’s predictive accuracy. For the 
variables in the parental mistakes model, correlation coefficients ranged 
from r = . to r = ., indicating moderate (and in some cases low) 
predictive ability of the model to predict variables based on their neighbors 
in the circular structure (see Table ). A correlation of approximately r ≈ . 
suggests that the model achieves moderate effectiveness, which, in the context 
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of the circular space, can be interpreted as confirmation that the variables 
are arranged in a manner consistent with the circular model’s assumptions.

Based on the data presented in the table, the predictive accuracy of 
the SVM model is stable for most variables. Correlation coefficients ranging 
from r = . to r = . indicate that the relationships among variables in 
the circular space are consistent, aligning with the theoretical distribution 
of variables in the model. An exception is the variable “Indifference,” for 
which a lower correlation value (r = .) was obtained. This discrepancy 
may suggest specific properties of this variable or its weaker alignment with 
the spatial relationships in the circular model.

Nevertheless, it is significant that for most variables, the model achieves 
similar correlation values at around r = .. This indicates that the variables are 
distributed in the circular space in a manner close to uniform, supporting the 
theoretical assumptions of the model. The closer the variables are located in 
the model, the stronger their predictive relationships appear, as confirmed by 
the SVM analysis results. The fact that variables such as “Rigorism” (r = .), 
“Indulging” (r = .), and “Doing Things for the Child” (r = .) achieve 
similar correlation values demonstrates the consistency of the model’s structure 
with its theoretical circular assumptions.

The lower value for the variable “Indifference” may be interpreted as 
a local specificity that requires further investigation. However, it does not 
significantly affect the overall conclusion that the variables in the model 
are distributed in the circular space in a manner consistent with theoretical 
assumptions.

From circular to spherical models – interpretation of results and future 
research directions

The analysis conducted in this article using SVM with a Radial Basis 
Function (RBF) kernel in Antonina Gurycka’s model of parental mistakes 
introduced an innovative approach to analyzing data from circular models. 
It is important to note that the application of the RBF kernel in the calcula-
tions presented here introduces an additional computational dimension but 
does not alter the theoretical structure of the circular model, which remains 
two-dimensional in both geometric and theoretical terms. The radial func-
tion enables the modeling of nonlinear relationships between variables in 
a higher-dimensional computational space, enhancing data modeling and 
improving predictive accuracy.

The introduction of a third dimension via radial functions allowed 
for overcoming the geometric limitations of the circular model, particularly 
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issues related to “dimension compression” as the number of variables in-
creases. However, it must be emphasized that the three-dimensional nature 
of the analysis introduced by RBF pertains only to the computational space 
and does not imply a fundamental change in the theoretical assumptions  
of the model. The geometric structure of the data in the circular model 
remains two-dimensional, consistent with the original theoretical assump-
tions. Nevertheless, three-dimensional analysis provides a more precise 
representation of relationships between variables.

Each variable in the analysis was described by coordinates (x, y, z) in 
a three-dimensional computational space, enabling a more accurate mapping 
of relationships among variables. The primary goal of this analysis was not 
to transform the circular model into a spherical model but to extend the 
predictive capabilities based on data derived from the circular model.

By applying SVM with an RBF kernel, it became possible to capture 
the mutual relationships among variables in the model more effectively. 
However, this does not imply that the circular model has been converted 
into a spherical model. The interpretation of data in the three-dimensional 
computational space serves merely as a tool for more efficient modeling  
of nonlinear relationships without altering the original geometric assump-
tions.

Radial functions (RBF) introduced a third dimension reflecting radial 
distances between points representing variables. In this approach, variables 
are no longer confined to a plane in a computational sense but extend from 
the center of a sphere toward its surface in three-dimensional space. Each 
dependent variable was predicted based on the two variables located closest 
to it within the circle’s structure.

A distinctive feature of this approach is that the third dimension in-
troduced by RBF does not necessitate changes to the theory or modifications 
of the data. The analysis in the three-dimensional computational space is an 
analytical tool that facilitates the representation of geometric relationships 
among variables while preserving the original assumptions of the circular 
model.

One variable stood out from this harmony. The variable “Indifference” 
achieved the lowest correlation value, r = .. The low correlation value for 
“Indifference” may suggest that the relationships in this part of the model 
require further analysis to understand why neighboring variables contribute 
less to its prediction.

Earlier studies conducted on a different sample revealed an even more 
intriguing phenomenon: variables that theoretically should be positively 
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correlated, such as “Indulging” and “Self-Accentuation,” begin to correlate 
negatively when incorporated into a shared higher-order structure with “In-
difference” (Szymańska & Torebko, ). This may indicate that the presence 
of “Indifference” disrupts certain mechanisms related to parent-focused 
behaviors, leading to internal tension among these variables. Although this 
finding requires further research, it opens intriguing perspectives for a deeper 
understanding of the mutual relationships among parental mistakes.

Transforming the circular model into a spherical model: the significance 
of variable placement in radial space

In a spherical model, variables are arranged within a three-dimen-
sional space, where each variable finds its position along an axis radiating 
from the center of the sphere toward its surface. A key assumption is that 
the position of variables in spherical space reflects both their intensity and 
significance in relation to other variables. It is assumed that variables closer to 
the sphere’s center represent more integrated and universal traits or attitudes, 
while variables on the sphere’s surface indicate more extreme, destructive, 
or specific characteristics.

In practice, such a structure allows for the representation of a con-
tinuum ranging from constructive to destructive traits or attitudes. For 
example, if the model pertains to parental mistakes, “directing the child’s 
activity” might be located closer to the center of the sphere, symbolizing its 
more adaptive and balanced nature. Conversely, “constraining the child’s 
activity” would be closer to the surface, indicating its potentially destructive 
effects on the child’s development. This arrangement preserves the continuity 
between positive and negative traits while incorporating their intensity and 
specificity into the analysis.

The transition from a circular to a spherical model necessitates a re-
interpretation of the relationships between variables. In a circular model, 
variables are arranged in a two-dimensional plane, where the angle between 
variables reflects the strength of their correlation. In a spherical model, the 
introduction of a third dimension allows for the additional consideration 
of variable intensity in a radial manner. In theory, this means that variables 
equidistant from the center in a circular model may occupy different depths 
within the sphere depending on their universality or extremity.

For instance, in a model based on parental mistakes, variables repre-
senting adaptive attitudes, such as “directing the child’s activity” or “support-
ing independence,” might be closer to the center of the sphere. Meanwhile, 
variables like “constraining the child’s activity” or “indifference toward the 
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child” would be located in the outer layers of the sphere. This division ac-
counts not only for the continuum of positive and negative traits but also 
for their intensity and influence on other variables.

To effectively implement a spherical model, appropriate scales must be 
developed to accommodate the three-dimensional nature of the space. These 
scales need to reflect both direction (e.g., positive-negative) and the depth 
of a variable in radial space. Dichotomous divisions, such as the continuum 
from constructive to destructive traits, can be helpful but are insufficient 
on their own. It is crucial to include gradations between variables and their 
mutual influence.

For example, in a spherical model, variables could be positioned such 
that both “constraining the child’s activity” and “directing the child’s activity” 
are represented at opposite poles of one axis, with their intensity expressed 
as the distance from the sphere’s center. In this framework, more complex 
or specific variables could be situated between these poles, creating smooth 
transitions between various attitudes.

Additionally, radial functions can be utilized to calculate distances 
and relationships between variables in spherical space. This enables precise 
representation of interactions among variables, facilitating a more detailed 
analysis of complex relationships.

Example of a spherical model based on the parental mistakes model
In Gurycka’s model, transforming the circular model into a spherical 

one would mean extending the interpretation of the continuum from pos-
itive attitudes to parental mistakes by adding a dimension of intensity and 
universality. In the spherical model, attitudes such as “constraining child’s 
activity” could be placed on the surface of the sphere, while more adaptive 
attitudes, like “directing the child’s activity,” would be closer to the center. 
Meanwhile, intermediate attitudes, such as “excessive control,” could be 
positioned in layers between the center and the surface.

This arrangement would allow for a better representation of not only 
the strength but also the nature of the relationships between variables. For 
example, variables like “doing things for the child” and “indulging” could be 
positioned closer to each other within the same layer of the sphere, reflecting 
their similarity in terms of their impact on child development, while their 
differences could be expressed by their distance from the center.
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Summary and discussion: transforming circular models into spherical 
models and future research perspectives

Spherical models offer greater precision and flexibility in analyz-
ing complex relationships between variables, eliminating the constraints  
of two-dimensional space. The addition of a third dimension allows for the 
resolution of issues related to the “compression” of variables that arise in 
circular models. In spherical models, variables are arranged radially, ena-
bling the consideration of both the intensity of influence and the positive or 
negative relationships between them.

Despite their advantages, spherical models present certain challenges. 
Introducing a three-dimensional space requires adjustments to existing scales 
and analytical tools. New analytical tools must account for the complexity  
of three-dimensional space, which involves additional costs and time. While 
spherical models provide greater precision, they may be less intuitive for 
researchers accustomed to two-dimensional models. Developing intuitive 
visualization tools could facilitate the transition from circular to spherical 
models.

Although spherical models represent a significant advancement, re-
searchers might also consider spherical surface models, which analyze data 
on the surface of a sphere. These models could be more suitable for analyzing 
cyclical or periodic phenomena, better reflecting their nature. The choice 
between a spherical model and a spherical surface model depends on the 
characteristics of the data and the research objectives.

Transforming circular models into spherical ones opens new ave-
nues for research, such as developing scales that enable transitions between 
two-dimensional and three-dimensional analyses and creating intuitive 
visualization tools. Empirical validation of spherical models in various the-
oretical contexts, such as parent-child relationship analysis, could also be 
explored. In such contexts, spherical models might provide new insights that 
are difficult to capture with circular models.

Spherical models represent a significant step forward in analyzing 
relationships between variables, offering flexibility, precision, and the ability 
to account for data complexity. Their development could fundamentally alter 
researchers’ approaches to analyzing complex theoretical structures.

In conclusion, the Radial Basis Function (RBF) kernel in the Support 
Vector Machine (SVM) method can be successfully used to validate existing 
circular models by introducing a third computational dimension. This tool 
allows researchers to more accurately model relationships between variables, 
overcoming the limitations of two-dimensional space. At the same time, it 
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is worth encouraging the development of new spherical models, which not 
only better reflect complex theoretical structures but can also be validated 
using the RBF kernel, enabling analysis in higher-dimensional spaces, such 
as four or five dimensions.

In these cases, spherical models offer a new perspective, enabling 
more accurate and precise representation of relationships between variables. 
However, the construction of such models requires careful development  
of theoretical foundations, the logic of which has been outlined in this ar-
ticle. This points to a direction for further research and the development  
of analytical tools that could support researchers in creating and validating 
more advanced geometric models.
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