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Introduction
In every science researcher’s beliefs play 

an important role: beliefs about what kind 
of scientific investigation should be under-
taken, beliefs about tools to be used, vari-
ables to include etc. In Bayesian statistics 
these beliefs play exceptional role, because 
they directly influence the results of the 
research. Beliefs expressed in the form 
of prior distribution of parameter, about 
which we want make an inference, impact 
the final result of this inference. According 
to Bayes’ rule:

e probability distribution of the pa-
rameter of interest is proportional to be-
liefs (prior) and the likelihood function of 
the model, computed at given data.

Forecasters also face the problem of 
expressing beliefs: about which forecasting 
model to choose, which variables to in-
clude, what relations between them to as-
sume. ese beliefs influence the results of 
the forecast, especially uncertainty, which 
is always related to forecasting. Researcher 
can never choose as many variables as 
possible and investigate relations between 
them, because there are no tools which 
would allow to reconcile precision with the 
size of the model. Some restrictions always 
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have to be imposed. If they are mistaken, 
the forecast will be imprecise.

e Bayesian statistics supply tools 
which allow to impose gentle restrictions 
on forecasting models. On the one hand, 
using these tools a researcher can express 
his more or less strong beliefs about the 
model and limit the scope of randomness 
and uncertainty, on the other hand she can 
let the data speak more than under tradi-
tional ways of restriction.

In this short essay I discuss the fol-
lowing issues: 1. Simple example of 
AR(1) model and its forecasting applica-
tion under Bayesian approach; 2. Vector 
autoregression and Minnesota prior; 3. 
Kalman filter and time varying param-
eters; 4. Structural models as a source of 
prior distribution.

1. Simple linear model
I can begin discussion of Bayesian 

methods in forecasting by introducing 
a simple linear autoregressive model. Its 
applications are rather limited, but it al-
lows to present the Bayesian approach to 
time series forecasting, basic methods and 
results.

It is useful to start with the simplest 
possible statistical model: stationary 
AR(1), in which the present value of the 
variable xt is determined by its past value 
xt-1 and a random forecast error et, which 
is distributed normally. Stationarity is not 
a necessary assumption, it is even an ad-
vantage of Bayesian methods that they do 
not require necessarily to investigate sta-
tionarity first, before doing an inference. 
However, this point will be discussed later. 
Here, for the simplicity purposes, we limit 
to the stationary version of the following 
model:

(1)

with

It is worth pointing out that all proce-
dures related to AR(1) model can be eas-
ily extended to the autoregressive model 
of higher order AR(p), because as we can 
see:

(2)

can be represented as:

which is the vector autoregressive model 
of the form

where almost all calculations from the AR 
model are applied. Vector autoregressive 
model will be discussed in details in the 
next chapter.

In classical statistics the forecast of the 
future values of   x = [xt+1, xt+2, …, xt+j] are 
computed as follows:

(3)

erefore the j-step ahead forecast is 
distributed as follows:

...
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where γ2 is a j-step ahead forecast error 
variance.

And the density of the forecasted values 
from t+1 to t+j is a multivariate normal 
with autocorrelated and heteroskedastic 
errors (for detailed computations of multi-
variate normal distribution see: Hamilton 
[1994]).

with:

and Σ is the variance-covariance matrix of 
the forecasted vector.

In Bayesian analysis the procedure is 
different, taking first into account that 
not only xt is a random variable, but also 
the parameter α is a random variable. 
erefore we have to proceed according to 
the following steps:

1. First, we assign a prior distribution to 
the parameters P(α, σ2).

2. Second, we compute a likelihood 
function of a vector of observations, 
expressed in terms of estimated OLS 
parameters.

3. ird, we compute a posterior distribu-
tion, which is the product of prior and 
the likelihood function, scaled by the 
parameter which guarantees integrity of 
the density.

4. Fourth, we compute the predictive den-
sity, which is unconditional on a given 
parameterization of the model:

(4)

Or we can write a forecast in a simpler 
way, as in equation (2), with the exception 
that the estimated parameter         is a mean 
of posterior distribution.

Let see how it can work in practice. We 
can imagine that we have T observations 
of the variable xt. ey form a vector:

e parameter α is a scalar. e vector 
of explanatory variables is X, the depend-
ent variables is just the same vector, but 

...
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moved one step ahead. Moreover, we have 
a vector of errors:

with

erefore we can write:

(5)

e OLS estimation of the parameter α 
is given by      . e likelihood function 
is given by multivariate normal:

(6)

where Ω is a variance — covariance matrix 
of the vector x, which is a function of pa-
rameters α and σ2.

Now we need a prior distribution for 
parameters α and σ2. In this example we 
will use so called Jeffreys prior, which is 
given by:

e use of this particular prior in this 
case is only for presentation purposes. 

ere exist a vast literature on what kind 
of prior distributions should be used in 
certain applications. In this chapter we 
only want to show the basic procedures, 
therefore we use the simple prior.

Combining the likelihood function and 
the prior distribution we get a posterior 
distribution function of the parameters:

(7)

Because the likelihood function can 
be expressed in terms of OLS parameters 
only, the posterior distribution is the func-
tion of parameters. Next we need a predic-
tive density function.

en the predictive density is com-
puted:

(8)

e numerical method is required to 
compute this density. en the mean and 
standard errors are computed, together 
with confidence intervals.

Or, again, we can write a forecast as in 
equation (2):

(9)

where             is the mean of posterior 
distribution of α.

...

...
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2. Bayesian vector autoregression and 
Minnesota prior

In this chapter I want to extend the 
basic procedures presented above and add 
some discussion about priors. e simple 
AR(1) model can be rarely used in applied 
economics, because relations in the econo-
my are too complicated to be represented 
by just one autoregressive relation. More 
commonly used are vector autoregres-
sions, so called VAR, which are oen com-
bined with the Bayesian approach, yielding 
so called Bayesian VAR, or BVAR.

Economists often use VAR models 
for forecasting purposes. They select 
a group of variables and allow them to 
interact linearly with their past values 
— of their own and each other. If a re-
searcher imposes no strong restriction 
on the model’s parameters, we often talk 
about unrestricted VAR — UVAR. It is of-
ten said that in such models “data speak” 
— the estimation depends almost only 
on the data, any beliefs supplied by the 
researcher are irrelevant. Such models 
perform quite well if the number if vari-
ables is small. Why? Because they incor-
porate only few forecast errors, therefore 
mean squared forecast error is low. On 
the other hand, it seems obvious that 
very often researchers want to investigate 
relations between many variables, which 
incorporate many forecast errors. In such 
a case UVAR may perform poorly. First, 
the mean squared forecast error becomes 
higher. Second, the more data we have 
and more relations we want to estimate, 
the more probable it is that we pick up 
some accidental relations, so called ran-
dom effects. As Todd [1984, p. 3] points 
out, the data may be estimated “too well”. 
The coefficients are so numerous that the 
statistical procedure can choose them to 
also fit many of the less important features 

of the historical data, features which often 
reflect merely accidental or random rela-
tionships that will not recur and are of no 
use in forecasting.

One way of avoiding such a problem 
is to use structural approach — base the 
statistical model on the structural model, 
what is done by including only few vari-
ables, believed to represent structural in-
teractions in the economy. In such models 
economic theory is used as a source of re-
striction on the number of variables and 
parameters. But some researchers point 
out that this restriction is too rigid. As 
Todd [1984, p. 3] writes: Excluding varia-
bles from an equation amounts to certainty 
that their coefficients are zero. Certainty is 
an absolute belief, not subject to revision by 
any amount of historical evidence. So such 
exclusion restrictions also amount to as-
signing coefficients of zero to the variables 
regardless of historical evidence.

Bayesian approach may be the other 
way of imposing restrictions on the sta-
tistical model’s parameters. The beliefs 
of a researcher are not imposed in the 
form of rigid exclusion of some param-
eters or variables, but in the form of as-
signing probability distribution to every 
parameter, allowing some of them to be 
estimated more “freely” and others — to 
be restricted around some values. Doing 
so we can allow data to have larger influ-
ence on some parameters, and smaller 
— on the others.

The most commonly used way to 
impose prior distributions is to use so 
called Minnesota prior. The name comes 
from the fact that this way of proceed-
ing was developed by economists coming 
from Minnesota University and Federal 
Reserve Bank of Minnesota.

The procedure in its essence is very 
simple. First, we choose variables that 
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should be included in the model and 
specify the set of equations that link 
them together. Second, we assign prior 
distribution to the parameters in the 
following way. The hypothesis is that 
the process is a random walk — the best 
forecast for future values is the present 
value. Therefore the mean of the distri-
bution of all coefficients is zero, with the 
exception that the mean of distribution 
for parameters on most recent value of 
each variable is 1.

Todd [1984, p. 6] writes: This hypoth-
esis capitalizes on a simple statistical ob-
servation that is often a forecaster’s chief 
source of embarrassment: many economic 
(and other) variables seem to behave as 
though changes in their values are com-
pletely unpredictable. For such a variable, 
the best forecast of its future values is just 
that they will equal its current value. Even 
for variables whose changes are thought to 
be partially predictable, these no-change 
forecasts can be surprisingly difficult to 
improve upon.

The prior is constructed in the fol-
lowing way. We choose the mean and 
the variance of parameters on each lag 
of each variable. The parameter on the 
first lag has mean 1 and the variance σ2  
chosen by the researcher. The mean for 
lags higher than 1 is 0, and the variance is 
proportionally lower. It is useful to repre-
sent this procedure in the example.

Imagine that we have a two variable 
VAR of lag length k (only for simplicity 
we omit an intercept, which is usually in-
cluded in the models):

(10)

where A(L) is a lag polynomial of order k:

and each matrix Ai consists of four entries: 
ai,11, ai,12, ai,21, ai,22. erefore we have two 
equations:

Each of them can be estimated using 
standard OLS together with Bayesian 
method described above, but it is nec-
essary at this point to show what steps 
should be done if we want to assign 
Minnesota prior.

First we stabilize prior variances H1 
and H2, where H1 describes variance on 
own lag coefficients and H2 describes 
variance on cross lag coefficients. Then 
we assign weights to these variances, as-
suming that the higher the lag the lower 
the variance, because the forecaster is 
more sure about accuracy of her guess. 
The weight is 1/1+k, where k is the lag 
number.

erefore:

2111

2111 ...

...
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Following Litterman [1985, p. 19] we 
can treat σ2 as known, taking the value 
of the estimate from OLS. Litterman 
writes: A Bayesian solution which takes 
(…) a diffuse prior distribution for σ2 leads 
to a normal-t posterior density for [coeffi-
cients] which would require an intractable 
numerical integration in order to calculate 
the posterior mean.

As usually, the VAR model is estimated 
equation by equation. Each equation can 
be written in the following form:

(11)

where
Y — is a (Tx1) matrix of all observations of 
a given variable
X — is a (Tx1) matrix of all observations of 
lags of a given variable and other variables
β — is a (px1) vector of parameters
E — is a (px1) vector of errors

Now we postulate the process for pa-
rameters of this equation in the following 
way:

(12)

where:
R — is a (pxp) identity matrix

β — is a (px1) vector of parameters
r — is a (px1) vector with of 1 correspond-
ing to parameters on most recent variables, 
and 0 corresponding to parameters on higer 
order lags
v — is a (px1) vector of errors with mean 0 
and variance corresponding

As many authors show (e.g. Litterman 
[1985, p. 15], Goldberger and eil [1961, 
p. 67]) the posterior mean for the vector β 
is given by:

Now we can easily compute the fore-
casted values of the variables.

In our example, taking the first equa-
tion:

(13)

or

In general, once we have estimated the 
whole BVAR, the j-step ahead forecast may 
be computed in easier way by transform-
ing the model.

Let

be the matrix polynomial of order k esti-
mated by the Bayesian method presented 

21
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above, therefore we obtain the following 
model:

(14)

or

Which can be transformed into:

(15)

e forecast is computed in the same 
way as in the simple AR(1) model:

(16)

3. Time varying parameters and 
Kalman filter

In the spirit of Lucas [1976] which ar-
gued that traditional macroeconometric 
models based on estimated time invariant 
coefficients can’t be used for the exami-

nation of economic policies, Sims [1982] 
suggested the use a time varying version 
of the Litterman VAR. Christopher Sims 
in 1982 paper argued that a complete re-
jection of reduced form models as a way 
of policy analysis is not justified.

In general, rational expectations revo-
lution questioned usefulness of the large 
scale econometric models due to the fact 
that they do not reflect the structural 
changes that the policy introduces in 
the economy. For example, if the policy-
maker considers various actions she may 
be trapped by the fact that a change in 
the policy would change parameters of 
the model on which that policy rely. As 
a response to that problem economists 
started to think about policy actions as 
policy rules — permanent changes in the 
behaviour of policymaker and its struc-
tural implications. Sims [1982, p. 109] 
writes: It is claimed, policy analysis should 
be formulated as choice among rules of 
behaviour for the policy authorities and 
estimates should be made of the stochastic 
properties of the economy under each pro-
posed rule to choose the best [...]. I argue 
that it is a mistake to think that decisions 
about policy can only be described, or even 
often be described, as choice among per-
manent rules of behaviour for the policy 
authorities.

A proposition to answer to questions 
raised by econometricians in 1970s is 
a use of Bayesian models which allow for 
time varying parameters. Disputes about 
the optimal rule are no more important 
in principle than disputes about how to 
implement the existing “rule” as it emerges 
from existing institutions or interests (Sims 
[1982, p. 139]). Making things simple, 
Sims argues that in the historical data 
we may discover changes in the policy. 
Bayesian models which allow for param-

...
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eters variation in time may be a good tool 
to assess such processes.

In this paper I limit to only present 
the model of Doan, Litterman and Sims 
[1986], but detailed discussion of Kalman 
filter used to evaluate such a model will 
be based on a simpler model.

Doan et al. analyze the forecasting 
procedures stemming from estimation 
of vector autoregressive model of the fol-
lowing form:

(17)

e prior — as in the example discussed 
above — is imposed in such a way that the 
best guess is a random walk process with 
dri:

e system is estimated equation by 
equations, therefore all parameters in 
an equation are gathered in a vector       
which follows a process:

e prior is assigned to the value   
which is distributed:

e parameter π controls the rate of 
decay towards a prior mean, whereas µ  
— the random change in the parameter 
vector — is assumed to be drawn from 
a distribution with zero mean and covari-
ance matrix proportional to ∑0.

Having specified the probability model, 
we apply the Kalman filter to each equation 
to obtain recursively posterior modes  for     

based on data through t-1. When w e 
have passed through the full sample this way, 
we end up with a value for the likelihood of 
the sample and with a full-sample estimate 
of the parameter vector applying at the first 
postsample date (Doan et al. [1986, p. 7]). 
erefore we are able to make a forecast of 
one step ahead.

e procedure is described on the 
slightly different version of the dynamic 
model, which can be found in the lecture 
notes of Cifarelli and Muliere [1989]. e 
system is described by two equations:

(18)

where

 — is (mx1) vector of the observed vari-
ables of the process

 — is (nx1) vector of parameters of the 
process at time t

Ft — is (mxn) matrix of independent vari-
ables noted at time t
υt — is (mx1) vector of stochastic independ-
ent errors with mean zero and cov matrix 
Vt

e equation describing the evolution 
of parameters is following:

(19)

where

Gt — is (nxn) matrix, describing how pa-
rameters evolve in time

 — is (nx1) vector of stochastic errors 
with covariance matrix Wt
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With the property:

We assign a prior distribution to the 
first observation of the parameters vector:

en step by step we assign probability 
distribution to next time parameters using 
following procedure.

We know the distribution of

erefore it is straight forward to deter-
mine the distribution of 

which is given by:

with

We can treat this as a prior for time t 
inference. Now we know that:

erefore, combining prior and likeli-
hood function we obtain posterior distri-
bution for

(20)

where:

Now we are able to compute forecast of 
the variable y for the time t+1, having all 
the information available at time t:

(21)

4. Structural models as a source for 
prior information

is part of the paper could be easily 
placed into above discussion about BVAR 
models and Minnesota prior, but I decided 
to present the issue separately, because it 
deserves some attention. e simple fore-
cast procedure associated with already 
estimated VAR has been already described, 
but here we discuss another method of 
assigning prior distribution to the pa-
rameters. It combines structural approach, 
which pursuits to discover structural rela-
tions in the economy and represent them 
through the model, with the pure statisti-
cal procedures used to forecast future val-
ues of economic variables. e procedure 
below is described aer Dejong and Dave 
[2007].

e VAR model is the same as above:

(22)
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e structural model in the form of 
stochastic difference equations, coming 
from solution of the first order conditions 
and log-linearization of equations, is the 
following:

(23)

(24)

e first dynamic equation describes the 
evolution of unobserved predetermined 
variables (like capital stock, technology), 
the second static equation describes rela-
tion between unobserved and observed 
variables (like output, interest rate, un-
employment). We assume that the prior 
distribution over parameters µ has been 
specified by a researcher. We can also as-
sume that Xt and Yt coincide.

A researcher draws 10 000 realizations 
from the prior distribution of µ. For each 
realization the following procedure is re-
peated 10 times. First, T random shocks 
et are simulated, which together with the 
value x0 are fed to equation (23). en T 
realizations of Xt are obtained. Aer this, 
a researcher estimates the parameters        

from the VAR by standard OLS regres-
sion. ese results allow to compute the 
prior distribution of parameters  and Σ 
— covariance matrix of Vt. Having speci-
fied their means, variances and other prop-
erties (ex. Degrees of freedom in Inverted-
Wishart distribution), we can write the 
multivariate prior distribution for pa-
rameters (note that from here below the 
small theta denotes vec(   ) from above, 
whereas big theta denotes matrix; hats 
stand for OLS estimators):

(25)

— multiv.normal distribution

(26)

— inverted — Wishart distribution

e posterior distribution is given by:

(27)

(28)

where:

Conclusions
Bayesian procedures in forecasting are 

not very different from classical ones, but 
the underlying difference is that they base 
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Summary

Bayesian methods are widely used by central banks‘ researchers to estimate forecasting models. 
e main difference between Bayesian approach and classical statistical approach is that the former 
treats data as given and parameters as stochastic variables, whereas the latter looks at sample data 
as one from various possible realizations, given a single vector of parameters. erefore the source 
of uncertainty is different when we analyze the economy using the Bayesian methods. In this paper 
I present the basic procedures associated with Bayesian approach in forecasting. I show the simplest 
application to the stationary autoregression process of order one and more developed applications to 
VAR models. e aim of the paper is to give to a reader a comprehensive guide to Bayesian forecast-
ing methods, which can be treated as a foundation to more advanced studies.

Key words: Bayesian statistics, Bayesian methods, forecasting

on different assumptions. e key point is 
that in bayesians statistics parameters are 
stochastic. We have to chose a model for 
their distribution together with its mean 
and variance (so called prior distribu-
tion), and then combine this distribution 
with a likellihood function for the data. In 
economic applications the most common 
model for the prior distribution is multi-
variate normal.

What is important, we can distinguish 
two very general approaches when it 
comes to selection of the prior distribu-
tion. First, a researcher can attribute 
a prior by himself, basing on his intuition, 
knowledge and some standard procedures, 
like with Minnesota prior, where a mean 
of the distribution is assumed to be one for 
the first lag and zero for higher order lags. 
Second, a researcher can use a structural 
models to form a prior.

In general, it can be said that in Bayesian 
approach intuition of a researcher plays 
greater role than in the classical approach. 
e subjective factor is certainly more im-
portant. Is it an advantage or a drawback? 
I doubt if this question would be answered 
unanimously.
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